Câu 1
ta có
phương trình tương đương
\(x+y+z+4-2\sqrt{x-2}-4\sqrt{y-3}-6\sqrt{z-5}=0\)
\(\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5-6\sqrt{z-5}+9\right)=0\)
\(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)
Nhận thấy \(\begin{cases}\\\\\end{cases}\begin{cases}\left(\sqrt{x-2}-1\right)^2\ge0\\\left(\sqrt{y-3}-2\right)^2\ge0\\\left(\sqrt{z-5}-3\right)^2\ge0\end{cases}\)
vậy để thỏa mãn pt, ta cần cả 3 biểu thức trên bằng o hay x = 3 ; y = 7 ; z = 14