Quách Phú Đạt

Cho a , b , c dương thỏa mãn \(a+b+c\le\sqrt{3}\)

Chứng minh rằng \(\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\le\frac{3}{2}\)

Kuro Kazuya
14 tháng 2 2017 lúc 13:47

Ta có \(a+b+c\le\sqrt{3}\)

\(\Rightarrow\left(a+b+c\right)^2\le3\)

\(\Rightarrow\frac{\left(a+b+c\right)^2}{3}\le1\)

Theo hệ quả của bất đẳng thức Cauchy

\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

\(\Rightarrow\frac{\left(a+b+c\right)^2}{3}\ge ab+bc+ac\)

\(\Rightarrow1\ge ab+bc+ac\)

\(\Rightarrow\left\{\begin{matrix}1+a^2\ge a^2+ab+bc+ac\\1+b^2\ge b^2+ab+bc+ac\\1+c^2\ge c^2+ab+bc+ac\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}\sqrt{1+a^2}\ge\sqrt{a^2+ab+bc+ca}\\\sqrt{1+b^2}\ge\sqrt{b^2+ab+bc+ca}\\\sqrt{1+c^2}\ge\sqrt{c^2+ab+bc+ca}\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}\frac{a}{\sqrt{1+a^2}}\le\frac{a}{\sqrt{a^2+ab+bc+ac}}\\\frac{b}{\sqrt{1+b^2}}\le\frac{b}{\sqrt{b^2+ab+bc+ac}}\\\frac{c}{\sqrt{1+c^2}}\le\frac{c}{\sqrt{c^2+ab+bc+ac}}\end{matrix}\right.\)

\(\Rightarrow\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\le\frac{a}{\sqrt{a^2+ab+bc+ca}}+\frac{b}{\sqrt{b^2+ab+bc+ca}}+\frac{c}{\sqrt{c^2+ab+bc+ca}}\)

\(\Rightarrow\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\le\frac{a}{\sqrt{a\left(a+b\right)+c\left(a+b\right)}}+\frac{b}{\sqrt{b\left(b+a\right)+c\left(a+b\right)}}+\frac{c}{\sqrt{c\left(c+a\right)+b\left(c+a\right)}}\)

\(\Rightarrow\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\le\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

Xét \(\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

Áp dụng bất đẳng thức Cauchy ngược dấu cho 2 bộ số thực không âm

\(\Rightarrow\left\{\begin{matrix}\sqrt{\left(a+b\right)\left(a+c\right)}\ge\frac{2a+b+c}{2}\\\sqrt{\left(a+b\right)\left(b+c\right)}\ge\frac{a+2b+c}{2}\\\sqrt{\left(c+a\right)\left(c+b\right)}\ge\frac{a+b+2c}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{2a}{2b+b+c}\\\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}\le\frac{2b}{a+2b+c}\\\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{2c}{a+b+2c}\end{matrix}\right.\)

\(\Rightarrow\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le2\left(\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\right)\)

Chứng minh rằng: \(2\left(\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\right)\le\frac{3}{2}\)

\(\Leftrightarrow\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\le\frac{3}{4}\)

Áp dụng bất đẳng thức \(\frac{1}{a+b}\ge\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) với a , b > 0

\(\Rightarrow\frac{a}{2a+b+c}=\frac{a}{a+c+a+b}\le\frac{a}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)

\(\Rightarrow\frac{b}{a+2b+c}=\frac{b}{a+b+b+c}\le\frac{b}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)\)

\(\Rightarrow\frac{c}{a+b+2c}=\frac{c}{a+c+b+c}\le\frac{c}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)

\(\Rightarrow VT\le\frac{a}{4\left(a+b\right)}+\frac{a}{4\left(a+c\right)}+\frac{b}{4\left(a+b\right)}+\frac{b}{4\left(b+c\right)}+\frac{c}{4\left(a+c\right)}+\frac{c}{4\left(b+c\right)}\)

\(\Rightarrow VT\le\frac{a}{4\left(a+b\right)}+\frac{b}{4\left(a+b\right)}+\frac{a}{4\left(a+c\right)}+\frac{c}{4\left(a+c\right)}+\frac{b}{4\left(b+c\right)}+\frac{c}{4\left(b+c\right)}\)

\(\Rightarrow VT\le\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}\left(đpcm\right)\)

\(\Rightarrow2\left(\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\right)\le\frac{3}{2}\)

\(\Rightarrow\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{3}{2}\)

Vậy \(\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\le\frac{3}{2}\left(đpcm\right)\)

Bình luận (5)
Akai Haruma
14 tháng 2 2017 lúc 16:53

Lời giải khác:

Áp dụng bđt Cauchy-Schwarz:

\((a^2+1)(1+3)\geq (a+\sqrt{3})^2\)\(\Rightarrow \frac{a}{\sqrt{a^2+1}}\leq \frac{2a}{a+\sqrt{3}}\)

Thực hiện tương tự với các phân thức còn lại:

\(\Rightarrow \frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\leq 2\left ( \frac{a}{a+\sqrt{3}}+\frac{b}{b+\sqrt{3}}+\frac{c}{c+\sqrt{3}} \right )=2A\) $(1)$

Lại có:

\(\)\(A=\left ( 1-\frac{\sqrt{3}}{a+\sqrt{3}} \right )+\left ( 1-\frac{\sqrt{3}}{b+\sqrt{3}} \right )+\left ( 1-\frac{\sqrt{3}}{c+\sqrt{3}} \right )=3-\sqrt{3}\left ( \frac{1}{a+\sqrt{3}}+\frac{1}{b+\sqrt{3}}+\frac{1}{c+\sqrt{3}} \right )\)

Cauchy-Schwarz kết hợp với \(a+b+c\leq \sqrt{3}\):

\(A\leq 3-\frac{9\sqrt{3}}{a+b+c+3\sqrt{3}}\leq 3-\frac{9\sqrt{3}}{4\sqrt{3}}=\frac{3}{4}\) $(2)$

Từ \((1),(2)\Rightarrow \text{VT}\leq 2A\leq \frac{3}{2}\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

Bình luận (3)
Lightning Farron
14 tháng 2 2017 lúc 23:29

Cách khác nữa:

Nhớ là \(f\left(x\right)=\frac{x}{\sqrt{x^2+1}}\) là 1 hàm lõm khi x>0, điều này xảy ra khi

\(f''(x)=-\dfrac{3x}{(x^2+1)^{\frac{5}{2}}}<0\). giờ thì sử dụng BĐT jensen

\(f\left(a\right)+f\left(b\right)+f\left(c\right)\le3f\left(\frac{a+b+c}{3}\right)=3f\left(\frac{\sqrt{3}}{3}\right)=\frac{3}{2}\left(a+b+c=\sqrt{3}\right)\)

Đạt dc GTLN khi \(a=b=c\).

Bình luận (1)
Lightning Farron
15 tháng 2 2017 lúc 20:59

Cách khác nữa:

Áp dụng BĐT AM-GM và BĐT W-P-M

\(\Sigma\frac{a}{\sqrt{a^2+1}}=\Sigma\frac{a}{\sqrt{a^2+3\cdot\frac{1}{3}}}\le\Sigma\frac{a}{\sqrt{4\sqrt[4]{\frac{a^2}{27}}}}=\frac{3\sqrt[8]{27}}{2}\cdot\frac{\Sigma\sqrt[4]{a^3}}{3}\)

\(\le\frac{3\sqrt[8]{27}}{2}\left(\frac{a+b+c}{3}\right)^{\frac{3}{4}}\le\frac{3\sqrt[8]{27}}{2}\cdot\left(\frac{\sqrt{3}}{3}\right)^{\frac{3}{4}}=\frac{3}{2}\) (xong)

P/s:Mong các bạn theo dõi và đóng góp ý kiến cho cách này

Bình luận (0)
Kuro Kazuya
22 tháng 2 2017 lúc 23:57

Ta có \(a+b+c\le\sqrt{3}\)

\(\Rightarrow\left(a+b+c\right)^2\le3\)

\(\Rightarrow\frac{\left(a+b+c\right)^2}{3}\le1\)

Theo hệ quả của bất đẳng thức Cauchy\

\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow\frac{\left(a+b+c\right)^2}{3}\ge ab+bc+ca\)

\(\Rightarrow1\ge ab+bc+ca\)

\(\Rightarrow\left\{\begin{matrix}1+a^2\ge a^2+ab+bc+ca=\left(a+c\right)\left(a+b\right)\\1+b^2\ge b^2+ab+bc+ca=\left(b+c\right)\left(a+b\right)\\1+c^2\ge c^2+ab+bc+ca=\left(b+c\right)\left(c+a\right)\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}\sqrt{1+a^2}\ge\sqrt{\left(a+c\right)\left(a+b\right)}\\\sqrt{1+b^2}\ge\sqrt{\left(b+c\right)\left(a+b\right)}\\\sqrt{1+c^2}\ge\sqrt{\left(b+c\right)\left(c+a\right)}\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}\frac{a}{\sqrt{a^2+1}}\le\frac{a}{\sqrt{\left(a+c\right)\left(a+b\right)}}\\\frac{b}{\sqrt{1+b^2}}\le\frac{b}{\sqrt{\left(b+c\right)\left(a+b\right)}}\\\frac{c}{\sqrt{1+c^2}}\le\frac{c}{\sqrt{\left(b+c\right)\left(c+a\right)}}\end{matrix}\right.\)

\(\Rightarrow VT\le\frac{a}{\sqrt{\left(a+c\right)\left(a+b\right)}}+\frac{b}{\sqrt{\left(b+c\right)\left(a+b\right)}}+\frac{c}{\sqrt{\left(b+c\right)\left(c+a\right)}}\)

\(\Leftrightarrow VT\le\sqrt{\frac{a^2}{\left(a+c\right)\left(a+b\right)}}+\sqrt{\frac{b^2}{\left(b+c\right)\left(a+b\right)}}+\sqrt{\frac{c^2}{\left(b+c\right)\left(c+a\right)}}\) ( 1 )

Áp dụng bất đẳng thức Cauchy

\(\Rightarrow\left\{\begin{matrix}2\sqrt{\frac{a^2}{\left(a+c\right)\left(a+b\right)}}\le\frac{a}{a+c}+\frac{a}{a+b}\\2\sqrt{\frac{b^2}{\left(b+c\right)\left(a+b\right)}}\le\frac{b}{b+c}+\frac{b}{a+b}\\2\sqrt{\frac{c^2}{\left(b+c\right)\left(c+a\right)}}\le\frac{c}{b+c}+\frac{c}{c+a}\end{matrix}\right.\)

\(\Rightarrow2\left(\sqrt{\frac{a^2}{\left(a+c\right)\left(a+b\right)}}+\sqrt{\frac{b^2}{\left(b+c\right)\left(a+b\right)}}+\sqrt{\frac{c^2}{\left(b+c\right)\left(c+a\right)}}\right)\le\frac{a}{a+b}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{b+c}+\frac{c}{c+a}+\frac{a}{a+c}\)

\(\Rightarrow2\left(\sqrt{\frac{a^2}{\left(a+c\right)\left(a+b\right)}}+\sqrt{\frac{b^2}{\left(b+c\right)\left(a+b\right)}}+\sqrt{\frac{c^2}{\left(b+c\right)\left(c+a\right)}}\right)\le1+1+1=3\)

\(\Rightarrow\sqrt{\frac{a^2}{\left(a+c\right)\left(a+b\right)}}+\sqrt{\frac{b^2}{\left(b+c\right)\left(a+b\right)}}+\sqrt{\frac{c^2}{\left(b+c\right)\left(c+a\right)}}\le\frac{3}{2}\) ( 2 )

Từ ( 1 ) và ( 2 )

\(\Rightarrow VT\le\frac{3}{2}\)

\(\Leftrightarrow\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\le\frac{3}{2}\) ( đpcm )

@phynit

Bình luận (0)

Các câu hỏi tương tự
lê thị tiều thư
Xem chi tiết
Trần Huỳnh Cẩm Hân
Xem chi tiết
Neet
Xem chi tiết
Xuân Trà
Xem chi tiết
Hoài Đoàn
Xem chi tiết
Nguyễn Châu
Xem chi tiết
Nguyễn Ngọc Tú Uyên
Xem chi tiết
Neet
Xem chi tiết
tran phuong thao
Xem chi tiết