Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Huỳnh Cẩm Hân

cho a, b, c > 0 thỏa abc=1

cm \(\frac{1}{\sqrt{ab+a+2}}\) +\(\frac{1}{\sqrt{bc+b+2}}\) +\(\frac{1}{\sqrt{ac+c+2}}\) \(\le\)\(\frac{3}{2}\)

Akai Haruma
18 tháng 1 2017 lúc 15:11

Lời giải:

Từ $abc=1$ suy ra tồn tại $x,y,z>0$ sao cho \((a,b,c)=\left(\frac{x}{y},\frac{y}{z},\frac{z}{x}\right)\)

Bài toán chuyển về CMR:

\(A=\sqrt{\frac{yz}{xy+xz+2yz}}+\sqrt{\frac{xz}{xy+yz+2xz}}+\sqrt{\frac{xy}{2xy+yz+xz}}\leq \frac{3}{4}\)

Áp dụng BĐT AM-GM: \(\sqrt{\frac{yz}{xy+xz+2yz}}\leq \frac{yz}{xy+xz+2yz}+\frac{1}{4}\)

Thiết lập tương tự... \(\Rightarrow A\leq \frac{xy}{2xy+yz+xz}+\frac{yz}{xy+2yz+xz}+\frac{xz}{xy+yz+2xz}+\frac{3}{4}\) $(1)$

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{\frac{xy+yz+xz}{3}}+\frac{1}{\frac{xy+yz+xz}{3}}+\frac{1}{\frac{xy+yz+xz}{3}}+\frac{1}{xy}\geq \frac{16}{2xy+yz+xz}\Rightarrow \frac{9xy}{xy+yz+xz}+1\geq \frac{16xy}{2xy+yz+xz}\)

Thiết lập tương tự với các phân thức còn lại và công theo vế:

\(\Rightarrow \frac{xy}{2xy+yz+xz}+\frac{yz}{xy+2yz+xz}+\frac{xz}{xy+yz+2xz}\leq \frac{12}{16}=\frac{3}{4}\) $(2)$

Từ \((1),(2)\Rightarrow A\leq \frac{3}{2} (\text{đpcm})\).

Dấu $=$ xảy ra khi $x=y=z$ hay $a=b=c=1$


Các câu hỏi tương tự
Quách Phú Đạt
Xem chi tiết
Quốc Bảo
Xem chi tiết
lê thị tiều thư
Xem chi tiết
Hoài Đoàn
Xem chi tiết
Nguyễn Ngọc Tú Uyên
Xem chi tiết
Neet
Xem chi tiết
Neet
Xem chi tiết
Ngịch ngợm
Xem chi tiết
Xuân Trà
Xem chi tiết