\(P=\dfrac{5x-2}{x^2-4}-\dfrac{3}{x+2}+\dfrac{x}{x-2}\\ P=\dfrac{5x-2}{\left(x+2\right)\left(x-2\right)}-\dfrac{3}{x+2}+\dfrac{x}{x-2}\\ P=\dfrac{5x-2-3\cdot\left(x-2\right)+x\cdot\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}\\ P=\dfrac{5x-2-3x+6+x^2+2x}{\left(x+2\right)\left(x-2\right)}\\ P=\dfrac{x^2+4x+4}{\left(x-2\right)\left(x+2\right)}\\ P=\dfrac{\left(x+2\right)^2}{\left(x+2\right)\left(x-2\right)}\\ P=\dfrac{x+2}{x-2}\)
vì P = \(\dfrac{4}{3}\) nên:
\(\dfrac{x+2}{x-2}=\dfrac{4}{3}\\ \Rightarrow3\cdot\left(x+2\right)=4\cdot\left(x-2\right)\\ \Rightarrow3x+6=4x-8\\ \Rightarrow8+6=4x-3x\\ \Rightarrow x=14\)
`a) P = ( 5x-2)/(x^2 -4) - 3/(x+2) + x/(x-2)` ( ĐKXĐ\(x\ne\pm2\))
`=> P = (5x-2)/[(x-2)(x+2)] - [3(x-2)]/[(x-2)(x+2)] + [x*(x+2)]/[(x-2)(x+2)]`
`=> P = (5x-2 - 3x + 6 + x^2 + 2x)/[(x-2)(x+2)]`
`=> P = (x^2 +4x+4)/[(x-2)(x+2)]`
`=> P = [(x+2)^2]/[(x-2)(x+2)]`
`=> P = (x+2)/(x-2)`
Vậy ` P = (x+2)/(x-2)`
`b)` Có : `P =4/3`
`=> (x+2)/(x -2) =4/3`
`=> 3(x+2) = 4(x-2)`
`=> 3x + 6 = 4x - 8`
`=> 3x - 4x = -6 -8`
`=> -x = -14`
`=> x =14` (thỏa mãn ĐKXĐ)`
Vậy `x=14`




