Đáp án C
Phương pháp giải:
Sử dụng công thức tính khoảng cách từ điểm đến đường thẳng, đưa về khảo sát hàm số để tìm giá trị nhỏ nhất – giá trị lớn nhất.
Đáp án C
Phương pháp giải:
Sử dụng công thức tính khoảng cách từ điểm đến đường thẳng, đưa về khảo sát hàm số để tìm giá trị nhỏ nhất – giá trị lớn nhất.
Gọi M(a;b) là điểm trên đồ thị hàm số y = 2 x + 1 x + 2 mà có khoảng cách đến đường thẳng d : y = 3 x + 6 nhỏ nhất. Khi đó:
A. a + 2b = 1
B. a + b = 2
C. a + b = -2
D. a + 2b = 3
Gọi M(a;b) là điểm thuộ y = 2 x + 1 x + 2 c đồ thị hàm số và có khoảng cách từ M đến đường thẳng d:y=3x+6 nhỏ nhất. Tìm giá trị của biểu thức T = 3 a 2 + b 2 .
A. T=4
B. T=3
C. T=9
D. T=10
Đường thẳng d : y = x - 3 cắt đồ thị (C) của hàm số y = x + 1 x - 2 tại hai điểm phân biệt A và B phân biệt. Gọi d 1 , d 2 lần lượt là khoảng cách từ A và B đến đường thẳng D: x-y=0. Tính d = d 1 + d 2
A. d = 3 2
B. d = 3 2 2
C. d = 6
D. d = 2 2
Giả sử m = - a b , a , b ∈ Z + , ( a , b ) = 1 là giá trị thực của tham số m để đường thẳng d : y = - 3 x + m cắt đồ thị hàm số y = 2 a + 1 x - 1 tại hai điểm phân biệt A,B sao cho trọng tâm tam giác OAB thuộc đường thẳng ∆ : x - 2 y - 2 = 0 với O là gốc tọa độ. Tính a+2b
A. 2
B. 5
C. 11
D. 21
Đường thẳng x = k cắt đồ thị hàm số y = log 5 x và đồ thị hàm số y = log 3 ( x + 4 ) . Khoảng cách giữa các giao điểm là 1/2. Biết k = a + b , trong đó a, b là các số nguyên. Khi đó tổng a + b bằng
A. 7
B. 6
C. 8
D. 5
Cho hàm số y = x + 1 x − 1 có đồ thị (C) và hai điểm M 0 ; 4 , N − 1 ; 2 . Gọi A;B là 2 điểm trên (C) sao cho các tiếp tuyến của (C) tại A và B song song đồng thời tổng khoảng cách từ M và từ N đến đường thẳng AB là lớn nhất. Tính độ dài đoạn thẳng AB
A. 5 6 3
B. 4 13 3
C. 2 5
D. 65
Trong không gian Oxyz, cho đường thẳng d: x - 2 1 = y - 1 - 2 = z - 1 2 và hai điểm A(3;2;1), B(2;0;4). Gọi ∆ là đường thẳng qua A, vuông góc với d sao cho khoảng cách từ B đến ∆ là nhỏ nhất. Gọi u → = 2 ; b ; c là một VTCP của ∆. Khi đó , u → bằng
A. 17
B. 5
C. 6
D. 3
Cho hàm số y = x − 3 x + 1 (C) và điểm M a ; b thuộc đồ thị (C). Đặt T = 3 ( a + b ) + 2 a b , khi đó để tổng khoảng cách từ điểm M đến hai trục toạ độ là nhỏ nhất thì mệnh đề nào sau đây là đúng?
A. − 3 < T < − 1.
B. − 1 < T < 1.
C. 1 < T < 3.
Đường thẳng d: y=x+m cắt đồ thị hàm số y = x - 1 x + 1 tại hai điểm phân biệt A, B sao cho O A 2 + O B 2 = 2 , O là gốc tọa độ. Khi đó m thuộc khoảng
A. - ∞ ; 2 - 2 2
B. 0 ; 2 + 2 2
C. 2 + 2 ; 2 + 2 2
D. 2 + 2 2 ; + ∞