a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có
EB chung
\(\widehat{ABE}=\widehat{DBE}\)
Do đó: ΔABE=ΔDBE
b: Xét ΔAEF vuông tại A và ΔDEC vuông tại D có
EA=ED
\(\widehat{AEF}=\widehat{DEC}\)
Do đó: ΔAEF=ΔDEC
Suy ra: AF=DC
c:ta có: BA+AF=BF
BD+DC=BC
mà BA=BD
và AF=DC
nên BF=BC
=>ΔBFC cân tại B
mà BE là đường phân giác
nên BE là đường cao