a) \(\left(x+5\right)^2=36\)
\(\Rightarrow\left(x+5\right)^2=6^2\)
\(\Rightarrow\left[{}\begin{matrix}x+5=6\\x+5=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=6-5\\x=-6-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-11\end{matrix}\right.\)
b) \(\left(2x-5\right)^3=64\)
\(\Rightarrow\left(2x-5\right)^3=4^3\)
\(\Rightarrow2x-5=4\)
\(\Rightarrow2x=4+5\)
\(\Rightarrow2x=9\)
\(\Rightarrow x=\dfrac{9}{2}\)
c) \(x^2=2\)
\(\Rightarrow x^2=\left(\sqrt{2}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)
d) \(\left(3x-1\right)^2=5\)
\(\Rightarrow\left(3x-1\right)^2=\left(\sqrt{5}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}3x-1=\sqrt{5}\\3x-1=-\sqrt{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3x=1+\sqrt{5}\\3x=1-\sqrt{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{5}}{3}\\x=\dfrac{1-\sqrt{5}}{3}\end{matrix}\right.\)
a: =>x+5=6 hoặc x+5=-6
=>x=-11 hoặc x=1
b: (2x-5)^3=64
=>(2x-5)^3=4^3
=>2x-5=4
=>2x=9
=>x=9/2
c: x^2=2
=>\(x^2=\left(\sqrt{2}\right)^2\)
=>\(x=\pm\sqrt{2}\)
d: (3x-1)^2=5
=>\(\left[{}\begin{matrix}3x-1=\sqrt{5}\\3x-1=-\sqrt{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=\sqrt{5}+1\\3x=-\sqrt{5}+1\end{matrix}\right.\)
=>\(x=\dfrac{\pm\sqrt{5}+1}{3}\)