Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Hoàng Tiến

giúp em mấy câu này với ạ

Bài 1:

a: \(\sin15^0=\sin\left(45^0-30^0\right)=\sin45^0\cdot cos30^0-cos45^0\cdot\sin30^0\)

\(=\frac{\sqrt2}{2}\cdot\frac{\sqrt3}{2}-\frac{\sqrt2}{2}\cdot\frac12=\frac{\sqrt6-\sqrt2}{4}\)

\(cos15^0=cos\left(45^0-30^0\right)=cos45^0\cdot cos30^0+\sin45^0\cdot\sin30^0\)

\(=\frac{\sqrt2}{2}\cdot\frac{\sqrt3}{2}+\frac{\sqrt2}{2}\cdot\frac12=\frac{\sqrt6+\sqrt2}{4}\)

\(\tan15^0=\frac{\sin15^0}{cos15^0}=\frac{\sqrt6-\sqrt2}{4}:\frac{\sqrt6+\sqrt2}{4}=\frac{\sqrt6-\sqrt2}{\sqrt6+\sqrt2}\)

\(=\frac{\left(\sqrt6-\sqrt2\right)\left(\sqrt6-\sqrt2\right)}{\left(\sqrt6+\sqrt2\right)\left(\sqrt6-\sqrt2\right)}=\frac{8-2\sqrt{12}}{6-2}=\frac{8-4\sqrt3}{4}=2-\sqrt3\)

\(\cot15^0=\frac{1}{\tan15^0}=\frac{1}{2-\sqrt3}=2+\sqrt3\)

\(\sin75^0=cos\left(90^0-75^0\right)=cos15^0=\frac{\sqrt6+\sqrt2}{4}\)

\(cos75^0=\sin15^0=\frac{\sqrt6-\sqrt2}{4}\)

\(\tan75^0=\cot15^0=2+\sqrt3\)

\(\cot75^0=\tan15^0=2-\sqrt3\)

\(\sin105^0=\sin\left(90^0+15^0\right)=cos15^0=\frac{\sqrt6+\sqrt2}{4}\)

\(cos105^0=cos\left(90^0+15^0\right)=-\sin15^0=\frac{-\sqrt6+\sqrt2}{4}\)

\(\tan105^0=\frac{\sin105^0}{cos105^0}=\frac{cos15^0}{-\sin15^0}=-\cot15^0=-2-\sqrt3\)

\(\cot105^0=\frac{1}{\tan105^0}=\frac{1}{-2-\sqrt3}=\frac{-1}{2+\sqrt3}=-\frac{-1\left(2-\sqrt3\right)}{\left(2+\sqrt3\right)\left(2-\sqrt3\right)}=-2+\sqrt3\)

b: \(\sin\left(\frac{\pi}{12}\right)=\sin\left(\frac{\pi}{4}-\frac{\pi}{6}\right)=\sin\frac{\pi}{4}\cdot cos\left(\frac{\pi}{6}\right)-cos\left(\frac{\pi}{4}\right)\cdot\sin\left(\frac{\pi}{6}\right)\)

\(=\frac{\sqrt2}{2}\cdot\frac{\sqrt3}{2}-\frac{\sqrt2}{2}\cdot\frac12=\frac{\sqrt6-\sqrt2}{4}\)

\(cos\left(\frac{\pi}{12}\right)=cos\left(\frac{\pi}{4}-\frac{\pi}{6}\right)=cos\left(\frac{\pi}{4}\right)\cdot cos\left(\frac{\pi}{6}\right)+\sin\left(\frac{\pi}{4}\right)\cdot\sin\left(\frac{\pi}{6}\right)\)

\(=\frac{\sqrt2}{2}\cdot\frac{\sqrt3}{2}+\frac{\sqrt2}{2}\cdot\frac12=\frac{\sqrt6+\sqrt2}{4}\)

\(\tan\left(\frac{\pi}{12}\right)=\frac{\sin\left(\frac{\pi}{12}\right)}{cos\left(\frac{\pi}{12}\right)}=\frac{\sqrt6-\sqrt2}{4}:\frac{\sqrt6+\sqrt2}{4}=\frac{\sqrt6-\sqrt2}{\sqrt6+\sqrt2}\)

\(=\frac{\left(\sqrt6-\sqrt2\right)\left(\sqrt6-\sqrt2\right)}{\left(\sqrt6+\sqrt2\right)\left(\sqrt6-\sqrt2\right)}=\frac{8-2\sqrt{12}}{6-2}=\frac{8-4\sqrt3}{4}=2-\sqrt3\)

\(\cot\left(\frac{\pi}{12}\right)=\frac{1}{\tan\left(\frac{\pi}{12}\right)}=\frac{1}{2-\sqrt3}=2+\sqrt3\)

\(\sin\left(\frac{5}{12}\pi\right)=cos\left(\frac{\pi}{2}-\frac{5}{12}\pi\right)=cos\left(\frac{\pi}{12}\right)=\frac{\sqrt6+\sqrt2}{4}\)

\(cos\left(\frac{5}{12}\pi\right)=\sin\left(\frac{\pi}{12}_{}\right)=\frac{\sqrt6-\sqrt2}{4}\)

\(\tan\left(\frac{5}{12}\pi\right)=\cot\left(\frac{\pi}{12}\right)=2+\sqrt3\)

\(\cot\left(\frac{5}{12}\pi\right)=\tan\left(\frac{\pi}{12}_{}\right)=2-\sqrt3\)

\(\sin\left(\frac{7}{12}\pi\right)=\sin\left(\frac{\pi}{2}+\frac{\pi}{12}\right)=cos\left(\frac{\pi}{12}\right)_{}=\frac{\sqrt6+\sqrt2}{4}\)

\(cos\left(\frac{7}{12}\pi\right)=cos\left(\frac{\pi}{2}+\frac{\pi}{12}\right)=-\sin\left(\frac{\pi}{12}\right)=\frac{-\sqrt6+\sqrt2}{4}\)

\(\tan\left(\frac{7}{12}\pi\right)=\frac{\sin\left(\frac{7}{12}\pi\right)}{cos\left(\frac{7}{12}\pi\right)}=\frac{cos\left(\frac{\pi}{12}\right)}{-\sin\left(\frac{\pi}{12}\right)}=-\cot15^0=-2-\sqrt3\)

\(\cot\left(\frac{7}{12}\pi\right)=\frac{1}{\tan\left(\frac{7}{12}\pi\right)}=\frac{1}{-2-\sqrt3}=\frac{-1}{2+\sqrt3}=-\frac{-1\left(2-\sqrt3\right)}{\left(2+\sqrt3\right)\left(2-\sqrt3\right)}=-2+\sqrt3\)



Các câu hỏi tương tự
Pham Van Dong
Xem chi tiết
Sennn
Xem chi tiết
Nguyễn Văn Tiến
Xem chi tiết
Nguyễn Vũ Quỳnh Như
Xem chi tiết
Sennn
Xem chi tiết
Sugoi Minamoto
Xem chi tiết
Phạm Thị Ngọc Lan
Xem chi tiết
Pi9_7
Xem chi tiết
Nguyễn Ngọc Thanh Vân
Xem chi tiết
Miu Bé
Xem chi tiết