Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Thị Ngọc Lan

mọi người giúp em giải chi tiết câu này với ạ 😿

Trương văn doanh
11 tháng 3 2022 lúc 14:31

theo mình thì câu trên: dưới mẫu trong căn bỏ n^2 ra làm nhân tử chung xong đặt nhân tử chung của cả mẫu là n^2 . câu dưới thì mình k biết!!

 

Nguyễn Việt Lâm
11 tháng 3 2022 lúc 18:33

\(\lim\dfrac{-3n+2}{n-\sqrt{4n+n^2}}=\lim\dfrac{\left(-3n+2\right)\left(n+\sqrt{4n+n^2}\right)}{\left(n-\sqrt{4n+n^2}\right)\left(n+\sqrt{4n+n^2}\right)}\)

\(=\lim\dfrac{\left(-3n+2\right)\left(n+\sqrt{4n+n^2}\right)}{-4n}=\lim\dfrac{n\left(-3+\dfrac{2}{n}\right)n\left(1+\sqrt{\dfrac{4}{n}+1}\right)}{-4n}\)

\(=\lim n\dfrac{\left(-3+\dfrac{2}{n}\right)\left(1+\sqrt{\dfrac{4}{n}+1}\right)}{-4}\)

Do \(\lim\left(n\right)=+\infty\)

\(\lim\dfrac{\left(-3+\dfrac{2}{n}\right)\left(1+\sqrt{\dfrac{4}{n}+1}\right)}{-4}=\dfrac{\left(-3+0\right)\left(1+\sqrt{0+1}\right)}{-4}=\dfrac{3}{2}>0\)

\(\Rightarrow\lim n\dfrac{\left(-3+\dfrac{2}{n}\right)\left(1+\sqrt{\dfrac{4}{n}+1}\right)}{-4}=+\infty\)

Nguyễn Việt Lâm
11 tháng 3 2022 lúc 18:36

\(\lim\left(\sqrt[3]{n^3+9n^2}-n\right)=\lim\dfrac{\left(\sqrt[3]{n^3+9n^2}-n\right)\left(\sqrt[3]{\left(n^3+9n^2\right)^2}+n\sqrt[3]{n^3+9n^2}+n^2\right)}{\sqrt[3]{\left(n^3+9n^2\right)}+n\sqrt[3]{n^3+9n^2}+n^2}\)

\(=\lim\dfrac{9n^2}{\sqrt[3]{\left(n^3+9n^2\right)^2}+n\sqrt[3]{n^3+9n^2}+n^2}\)

\(=\lim\dfrac{9n^2}{n^2\sqrt[3]{\left(1+\dfrac{9}{n}\right)^2}+n^2\sqrt[3]{1+\dfrac{9}{n}}+n^2}\)

\(=\lim\dfrac{9}{\sqrt[3]{\left(1+\dfrac{9}{n}\right)^2}+\sqrt[3]{1+\dfrac{9}{n}}+1}\)

\(=\dfrac{9}{\sqrt[3]{\left(1+0\right)^2}+\sqrt[3]{1+0}+1}=\dfrac{9}{3}=3\)


Các câu hỏi tương tự
Phạm Thị Ngọc Lan
Xem chi tiết
Phạm Thị Ngọc Lan
Xem chi tiết
Nguyễn Vũ Quỳnh Như
Xem chi tiết
Hải Nhung
Xem chi tiết
Anh Anh
Xem chi tiết
Sennn
Xem chi tiết
Sugoi Minamoto
Xem chi tiết
Ngô Tiến Thành
Xem chi tiết
Đặng Duy Hoàng
Xem chi tiết