a.
Do BE, CF là các đường cao \(\Rightarrow\widehat{BFH}=\widehat{CEH}=90^0\)
Xét hai tam giác BHF và CHE có:
\(\left\{{}\begin{matrix}\widehat{BFH}=\widehat{CEH}=90^0\\\widehat{BHF}=\widehat{CHE}\left(\text{đối đỉnh}\right)\end{matrix}\right.\)
\(\Rightarrow\Delta BHF\sim\Delta CHE\left(g.g\right)\)
\(\Rightarrow\dfrac{HB}{HC}=\dfrac{HF}{HE}\Rightarrow HE.HB=HC.HF\)
b.
Xét hai tam giác BAE và CAF có:
\(\left\{{}\begin{matrix}\widehat{A}-chung\\\widehat{BEA}=\widehat{CFA}=90^0\end{matrix}\right.\)
\(\Rightarrow\Delta BAE\sim\Delta CAF\left(g.g\right)\)
\(\Rightarrow\dfrac{AE}{AF}=\dfrac{AB}{AC}\Rightarrow\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét hai tam giác AEF và ABC có:
\(\left\{{}\begin{matrix}\widehat{A}-chung\\\dfrac{AE}{AB}=\dfrac{AF}{AC}\left(cmt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta AEF\sim\Delta ABC\left(c.g.c\right)\)
a) Xét \(\Delta BHF\) và \(\Delta CHE\) có:
\(\left\{{}\begin{matrix}\widehat{BFH}=\widehat{CEH}=90^{\circ}\left(CF\bot AB;BE\bot AC;BE\cap CF=\left\{H\right\}\right)\\\widehat{BHF}=\widehat{CHE}\left(\text{hai góc đối đỉnh}\right)\end{matrix}\right.\)
\(\Rightarrow \Delta BHF\backsim \Delta CHE\) \(\left(g.g\right)\Rightarrow\dfrac{HB}{HC}=\dfrac{HF}{HE}\) (các cạnh tương ứng)
\(\Rightarrow HE\cdot HB=HC\cdot HF\) (đpcm)
b) Xét \(\Delta ABE\) và \(\Delta ACF\) có: \(\left\{{}\begin{matrix}\widehat{AEB}=\widehat{AFC}=90^{\circ}\left(BE\bot AC;CF\bot AB\right)\\\widehat{BAC}\text{ chung}\end{matrix}\right.\)
\(\Rightarrow \Delta ABE \backsim \Delta ACF\) \(\left(g.g\right)\Rightarrow\dfrac{AB}{AC}=\dfrac{AE}{AF}\) (các cạnh tương ứng)
\(\Rightarrow\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét \(\Delta AEF\) và \(\Delta ABC\) có: \(\left\{{}\begin{matrix}\dfrac{AE}{AB}=\dfrac{AF}{AC}\left(cmt\right)\\\widehat{BAC}\text{ chung}\end{matrix}\right.\)
\(\Rightarrow \Delta AEF \backsim \Delta ABC\) \(\left(c.g.c\right)\) (đpcm)
\(\text{#}Toru\)