Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hải Anh

Giair hpt:

\(\left\{\begin{matrix}x+y=\sqrt{4z-1}\\y+z=\sqrt{4x-1}\\z+x=\sqrt{4y-1}\end{matrix}\right.\)

Akai Haruma
10 tháng 2 2017 lúc 16:02

Lời giải:

ĐK \(x,y,z\geq \frac{1}{4}\)

\(\text{HPT}\Rightarrow 2(x+y+z)=\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\)

Áp dụng bất đẳng thức AM-GM ta có :

\(\sqrt{4x-1}=\sqrt{(4x-1).1}\leq \frac{4x-1+1}{2}=2x\)

Tương tự với các biểu thức còn lại.....

\(\Rightarrow \sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\leq 2(x+y+z)\)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} 4x-1=1\\ 4y-1=1\\ 4z-1=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{1}{2}\\ y=\frac{1}{2}\\ z=\frac{1}{2}\end{matrix}\right.\)

Vậy HPT có nghiệm \((x,y,z)=\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)\)

EDOGAWA CONAN
21 tháng 8 2018 lúc 16:53

x = y = z = 0,5


Các câu hỏi tương tự
lê thị tiều thư
Xem chi tiết
Như
Xem chi tiết
Như
Xem chi tiết
michelle holder
Xem chi tiết
lê thị tiều thư
Xem chi tiết
lê thị tiều thư
Xem chi tiết
michelle holder
Xem chi tiết
Như
Xem chi tiết
Hải Anh
Xem chi tiết