Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minh Nguyễn Cao

Giải phương trình

\(2x+3+\sqrt{4x^2+9x+2}=2\sqrt{x+2}+\sqrt{4x+1}\)

Incursion_03
20 tháng 7 2019 lúc 12:54

\(2x+3+\sqrt{4x^2+9x+2}=2\sqrt{x+2}+\sqrt{4x+1}\left(x\ge-\frac{1}{4}\right)\)

\(\Leftrightarrow2\left(x+2\right)-1+\sqrt{\left(x+2\right)\left(4x+1\right)}=2\sqrt{x+2}+\sqrt{4x+1}\)

\(\Leftrightarrow4\left(x+2\right)-2+2\sqrt{x+2}.\sqrt{4x+1}=4\sqrt{x+2}+2\sqrt{4x+1}\)

Đặt \(\hept{\begin{cases}2\sqrt{x+2}=a\left(a\ge0\right)\\\sqrt{4x+1}=b\left(b\ge0\right)\end{cases}\Rightarrow}a^2-b^2=4\left(x+2\right)-4x-1=7\)\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=7\)(1)

\(pt:a^2-2+ab=2a+2b\)

\(\Leftrightarrow a\left(a+b\right)-2\left(a+b\right)=2\)

\(\Leftrightarrow\left(a-2\right)\left(a+b\right)=2\)(2)

Nhân chéo 2 vế của (1) với (2) được

\(7\left(a-2\right)\left(a+b\right)=2\left(a-b\right)\left(a+b\right)\)

\(\Leftrightarrow7\left(a-2\right)=2\left(a-b\right)\left(Do\left(a+b\right)>0\right)\)

\(\Leftrightarrow7a-14=2a-2b\)

\(\Leftrightarrow5a=14-2b\)

\(\Leftrightarrow10\sqrt{x+2}=14-2\sqrt{4x+1}\)

\(\Leftrightarrow5\sqrt{x+2}=7-\sqrt{4x+1}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{4x+1}\le7\\25\left(x+2\right)=49-14\sqrt{4x+1}+4x+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}0\le4x+1\le49\\21x=-14\sqrt{4x+1}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-\frac{1}{4}\le x\le0\\441x^2=196\left(4x+1\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-\frac{1}{4}\le x\le0\\441x^2-784x-196=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-\frac{1}{4}\le x\le0\\49\left(9x+2\right)\left(x-2\right)=0\end{cases}}\)

\(\Leftrightarrow x=-\frac{2}{9}\left(TmĐKXĐ\right)\)

Vậy

tth_new
22 tháng 7 2019 lúc 20:40

Incursion_03 em thử nha, sai thì thôi ạ, em hơi nghiện liên hợp r.

ĐK: x>=-1/4

PT \(\Leftrightarrow2x+\frac{31}{9}+\sqrt{4x^2+9x+2}-\frac{4}{9}=2\sqrt{x+2}-\frac{8}{3}+\sqrt{4x+1}-\frac{1}{3}+3\)

\(\Leftrightarrow2\left(x+\frac{2}{9}\right)+\frac{\left(x+\frac{2}{9}\right)\left(4x+\frac{73}{9}\right)}{\sqrt{4x^2+9x+2}+\frac{4}{9}}=\frac{4\left(x+\frac{2}{9}\right)}{2\sqrt{x+2}+\frac{8}{3}}+\frac{4\left(x+\frac{2}{9}\right)}{\sqrt{4x+1}+\frac{1}{3}}\)

\(\Leftrightarrow\left(x+\frac{2}{9}\right)\left[2+\frac{4x+\frac{73}{9}}{\sqrt{4x^2+9x+2}+\frac{4}{9}}-4\left(\frac{1}{2\sqrt{x+2}+\frac{8}{3}}+\frac{1}{\sqrt{4x+1}+\frac{1}{3}}\right)\right]=0\)

Cái ngoặc to em chịu:( đang suy nghĩ

Trần Phúc Khang
23 tháng 7 2019 lúc 15:40

ĐK \(x\ge-\frac{1}{4}\)

Cách liên hợp 

\(\left(x+\frac{26}{9}-2\sqrt{x+2}\right)+\left(3x+1-\sqrt{4x+1}\right)+\left(\sqrt{4x^2+9x+2}-2x-\frac{8}{9}\right)=0\)

<=>\(\frac{x^2+\frac{16}{9}x+\frac{28}{81}}{x+\frac{26}{9}+2\sqrt{x+2}}+\frac{9x^2+2x}{3x+1+\sqrt{4x+1}}+\frac{\frac{49}{9}x+\frac{98}{81}}{\sqrt{4x^2+9x+2+2x+\frac{8}{9}}}=0\)

<=>\(\frac{\left(x+\frac{2}{9}\right)\left(x+\frac{14}{9}\right)}{x+\frac{26}{9}+2\sqrt{x+2}}+\frac{9x\left(x+\frac{2}{9}\right)}{3x+1+\sqrt{4x+1}}+\frac{\frac{49}{9}\left(x+\frac{2}{9}\right)}{\sqrt{4x^2+9x+2}+2x+\frac{8}{9}}=0\)

=>\(\orbr{\begin{cases}x=-\frac{2}{9}\left(tmĐK\right)\\\frac{x+\frac{14}{9}}{x+\frac{26}{9}+2\sqrt{x+2}}+\frac{9x}{3x+1+\sqrt{4x+1}}+\frac{\frac{49}{9}}{\sqrt{4x^2+9x+2}+2x+\frac{8}{9}}0\left(2\right)\end{cases}}\)

(2)  Quy đồng phân số thứ 2 và thứ 3  ta được \(\frac{18x^2+\frac{73}{3}x+\frac{49}{9}+BT}{MS}>0\) 

ta sẽ Cm được \(VT>0\forall x\ge-\frac{1}{4}\)=> PT (2) vô nghiệm

Vậy x=-2/9


Các câu hỏi tương tự
Khánh An Ngô
Xem chi tiết
Hồ Nguyễn Khánh Minh
Xem chi tiết
Bao Nguyen Trong
Xem chi tiết
Nguyễn Khánh Nhi
Xem chi tiết
Đạm Đoàn
Xem chi tiết
ngoc bich 2
Xem chi tiết
nood
Xem chi tiết
Xem chi tiết
Trần Hoài Bão
Xem chi tiết