đkxđ \(x\ne0;2\)
\(\dfrac{2}{x^2-2x}+\dfrac{1}{x}=\dfrac{x+2}{x-2}\\ \Leftrightarrow\dfrac{2+\left(x-2\right)-\left(x+2\right)x}{x\left(x-2\right)}=0\\ \Leftrightarrow\dfrac{-x^2-x}{x\left(x-2\right)}=0\\ \Leftrightarrow-x^2-x=0\\ \Leftrightarrow-x\left(x+1\right)=0\)
mà \(x\ne0\Rightarrow x+1=0\\ \Leftrightarrow x=-1\)
=2/x(x-2) + x-2/x(x-2)=x(x+2)/x(x-2)
<=>2 +x +2 -x^2 -2x=0
<=>4 -x -x^2=0
<=>-x(1+x)=4
Ta có: \(\dfrac{2}{x^2-2x}+\dfrac{1}{x}=\dfrac{x+2}{x-2}\)
\(\Leftrightarrow2+x-2=x\left(x+2\right)\)
\(\Leftrightarrow x^2+2x-x=0\)
\(\Leftrightarrow x^2+x=0\)
hay x=-1