PTHĐGĐ là;
x^2=2x-(m+1)
=>x^2-2x+m+1=0
Δ=(-2)^2-4(m+1)=4-4m-4=-4m
Để phương trình có hai nghiệm phân biệt thì -4m>0
=>m<0
Để (P) cắt (d) tại hai điểm phân biệt nằm về cùng một phía với trục Oy thì m+1>0
=>m>-1
=>-1<m<0
PTHĐGĐ là;
x^2=2x-(m+1)
=>x^2-2x+m+1=0
Δ=(-2)^2-4(m+1)=4-4m-4=-4m
Để phương trình có hai nghiệm phân biệt thì -4m>0
=>m<0
Để (P) cắt (d) tại hai điểm phân biệt nằm về cùng một phía với trục Oy thì m+1>0
=>m>-1
=>-1<m<0
Cho đường thẳng d: y = 2x − 5 và parabol (P): y = ( m – 1 ) x 2 (m ≠ 0) . Tìm m để d và (P) cắt nhau tại hai điểm A và B phân biệt và cùng nằm về một phía đối với trục tung.
A. m > 1
B. - 2 3 < m < 1
C. 2 3 < m < 1
D. m < - 2 3
Giá trị của m để đường thẳng y=x-2 cắt đồ thị hàm số y=mx2 tại hai điểm phân biệt nằm về hai phía của trục tung
A.0<m<\(\dfrac{1}{8}\) B.m<0 C.m<\(\dfrac{1}{8}\) D.m≠0
Giải thích chi tiết hộ em với ạ
Cho parabol (P): y = x 2 và đường thẳng d: y = (m + 2)x – m – 1. Tìm m để d cắt (P) tại hai điểm phân biệt nằm về hai phía trục tung
A. m < −1
B. m < −2
C. m > −1
D. −2 < m < −1
Cho đường thẳng d: y = −3x + 1 và parabol (P): y = m x 2 (m ≠ 0) . Tìm m để d và (P) cắt nhau tại hai điểm A và B phân biệt và cùng nằm về một phía đối với trục tung.
A. m > - 9 4
B. - 9 4 < m < 0
C. m < 0
D. m > 9 4
Cho parabol (P): y = x2 và đường thẳng (d): y = mx - m + 1, m là tham số.
a)Với m = 3 hãy tìm tọa độ giao điểm của (P) và (d)
b) T ìm m để (d) cắt (P) tại 2 điểm nằm về hai phía của trục tung.
c)Tìm m để (d) cắt (P) tại 2 điểm phân biệt cùng có hoành độ dương.
d)Tìm m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thoả mãn x1 < x2 < 2
Trong mặt phẳng tọa độ Oxy cho parabol (P): y = x 2 và đường thẳng (d): y = 2x + m (m là tham số).
b) Tìm giá trị của m để đường thẳng (d) cắt parabol (P) tại hai điểm A, B nằm về hai phía của trục tung, sao cho diện tích có diện tích gấp hai lần diện tích (M là giao điểm của đường thẳng d với trục tung).
Cho parabol (P): y = 𝑥^2 và đường thẳng (d): y = mx − m + 1. Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt nằm ở hai phía trục tung.
Cho parabol (P): y = x2 và đường thẳng (d): y = (2m+1)x - m2 - m. Tìm m để (d) cắt (P) tại hai điểm phân biệt A, B sao cho A, B nằm ở hai phía trục tung.
a, Giải hệ phương trình: x + 1 y - 1 = x y - 1 x - 3 y - 3 = x y - 3
b, Trên mặt phẳng tọa độ Oxy, cho prabol (P): y = x 2 và đường thẳng d: y = 2 x + m 2 - 2 m . Tìm các giá trị của m để d cắt (P) cắt tại hai điểm phân biệt nằm về hai phía của trục tung Oy