Chứng minh đẳng thức sau:
\(\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\left(\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}\right)=\dfrac{\sqrt{a}-1}{\sqrt{a}}\) với a>0 và a khác 1
\(P=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right):\dfrac{\sqrt{a}+1}{a-1}\) (a>0, a khác 1)
a. Rút gọn biểu thức P
b. Tìm các giá trị của a để P<0
\(P=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right):\dfrac{\sqrt{a}+1}{a-1}\) (a>0, a khác 1)
a. Rút gọn biểu thức P
b. Tìm các giá trị của a để P<0
A=\(\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{a-\sqrt{a}}\right):\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{2}{a-1}\right)\)với a>0,a khác 1
a)rút gọn A
b)tính giá trị của A biết a=4+2\(\sqrt{3}\)
c)tìm a để A<0
A=(\(\dfrac{1}{a+\sqrt{a}}\)+\(\dfrac{1}{\sqrt{a}+1}\)):\(\dfrac{\sqrt{a}-1}{a-2\sqrt{a}+1}\)(với a>0,a khác 1)
a)Rút gọn A
b)Tìm giá trị của a để A=-2
a) Chứng minh đẳng thức sau:
\(\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\left(\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}\right)=\dfrac{\sqrt{a}-1}{\sqrt{a}}\) với a>0 và a khác 1
b) Tìm giá trị nhỏ nhất của A = \(x-2\sqrt{x+2}\)
M=\(\dfrac{a+1}{\sqrt{a}}\)+\(\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}\)+\(\dfrac{a^2-a\sqrt{a}+\sqrt{a}-1}{\sqrt{a}-a\sqrt{a}}\)(với a>0,a khác 1)
a) Chứng minh rằng M>4
b)Với những giá trị nào của a thì biểu thức N=\(\dfrac{6}{M}\) nhận giá trị nguyên
Rút gọn biểu thức :
M = \(\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+1\right).\left(1+\dfrac{a-\sqrt{a}}{1-\sqrt{a}}\right)\)
( Với a lớn hơn hoặc bằng 0 ; a khác 1 )
Rút gọn : A=\(\left(\dfrac{a+3\sqrt{a}}{\sqrt[]{a}+3}-2\right)\left(\dfrac{a-1}{\sqrt{a}-1}+1\right)\) với a ≥0,a khác 1