\(a,A=\left(\dfrac{1}{a+\sqrt{a}}+\dfrac{1}{\sqrt{a}+1}\right):\dfrac{\sqrt{a}-1}{a-2\sqrt{a}+1}\left(dk:a>0,a\ne1\right)\\ =\left(\dfrac{1}{\sqrt{a}\left(\sqrt{a}+1\right)}+\dfrac{1}{\sqrt{a}+1}\right):\dfrac{\sqrt{a}-1}{\left(\sqrt{a}-1\right)^2}\\ =\dfrac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}+1\right)}:\dfrac{1}{\sqrt{a}-1}\\ =\dfrac{1}{\sqrt{a}}.\dfrac{\sqrt{a}-1}{1}\\ =\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
\(b,A=-2\Leftrightarrow\dfrac{\sqrt{a}-1}{\sqrt{a}}=-2\Leftrightarrow\dfrac{\sqrt{a}-1+2\sqrt{a}}{\sqrt{a}}=0\Leftrightarrow3\sqrt{a}=1\Leftrightarrow\sqrt{a}=\dfrac{1}{3}\Leftrightarrow a=\dfrac{1}{9}\left(tmdk\right)\)
Vậy \(a=\dfrac{1}{9}\) thì \(A=-2\)