a: \(Q=\left(\dfrac{a-1}{2\sqrt{a}}\right)^2\cdot\dfrac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{a-1}\)
\(=\dfrac{\left(a-1\right)^2}{4a}\cdot\dfrac{a-2\sqrt{a}+1-a-2\sqrt{a}-1}{a-1}\)
=\(\dfrac{\left(a-1\right)^2\cdot\left(-4\sqrt{a}\right)}{\left(a-1\right)\cdot4a}=\dfrac{-\left(a-1\right)}{\sqrt{a}}\)
b: Q<0
=>-(a-1)<0
=>a-1>0
=>a>1
c: Q=2
=>\(a-1=-2\sqrt{a}\)
=>\(a+2\sqrt{a}-1=0\)
=>\(\left[{}\begin{matrix}\sqrt{a}=-1+\sqrt{2}\left(nhận\right)\\\sqrt{a}=-1-\sqrt{2}\left(loại\right)\end{matrix}\right.\Leftrightarrow a=3-2\sqrt{2}\)