Ta có: \(P=\left(\dfrac{1}{1-\sqrt{a}}-\dfrac{1}{1+\sqrt{a}}\right)\cdot\left(1-\dfrac{1}{\sqrt{a}}\right)\)
\(=\dfrac{1+\sqrt{a}-1+\sqrt{a}}{-\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
\(=\dfrac{-2\sqrt{a}}{\sqrt{a}\left(\sqrt{a}+1\right)}=\dfrac{-2}{\sqrt{a}+1}\)