a: \(A=\dfrac{2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}}=\dfrac{2\sqrt{x}+1}{x+\sqrt{x}}\)
a: \(A=\dfrac{2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}}=\dfrac{2\sqrt{x}+1}{x+\sqrt{x}}\)
\(P=\left(\dfrac{\sqrt{x}+1}{x-1}+\dfrac{x}{x-\sqrt{x}}\right):\left(1+\dfrac{1}{\sqrt{x}}\right)\) với x > 0; x \(\ne\) 1
a) Rút gọn P
b) Tìm GTNN của biểu thức M = P.\(\sqrt{x}\) khi x > 1
1. Rút gọn biểu thức
\(\sqrt{\dfrac{4}{3}}+\sqrt{12}-\dfrac{4}{3}\sqrt{\dfrac{3}{4}}\)
2. Đưa thừa số vào trong dấu căn :
a. \(\left(2-a\right)\sqrt{\dfrac{2a}{a-2}}\) với a lớn hơn 2
b. với 0 bé hơn x, x bé hơn 5. \(\left(x-5\right)\sqrt{\dfrac{x}{25-x^2}}\)
c. Với 0 bé hơn a, a bé hơn b \(\left(a-b\right)\)\(\sqrt{\dfrac{3a}{b^2-a^2}}\)
Rút gọn:
\(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{x-\sqrt{x}+1}{x+\sqrt{x}-2}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}+2}-\dfrac{x-\sqrt{x}-4}{x+\sqrt{x}-2}\right)\)
Câu 1:
\(C=\dfrac{1}{x+2}-\dfrac{x^3-4x}{x^2+4}\cdot\left(\dfrac{1}{x^2+4x+4}-\dfrac{1}{4-x^2}\right)\)
a) Rút gọn C
b) x bằng mấy để C = 1?
Câu 2:
\(B=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
a) Rút gọn B
b) x bằng mấy để \(\left|B\right|=B\)
Câu 3: Rút gọn:
\(A=\left[\dfrac{\left(1-a\right)^2}{3a+\left(a-1\right)^2}+\dfrac{2a^2-4a-1}{a^3-1}-\dfrac{1}{1-a}\right]:\dfrac{2a}{a^3+a}\)
Rút gọn:
\(A=\left(\dfrac{x-5\sqrt{x}}{x-25}-1\right):\left(\dfrac{25-x}{x+2\sqrt{x}-15}-\dfrac{\sqrt{x}+3}{\sqrt{x}+5}+\dfrac{\sqrt{x}-5}{\sqrt{x}+3}\right)\)
Rút gọn:
\(A=\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{\sqrt{x}}\cdot\left(\dfrac{1}{1-\sqrt{x}}-1\right)\)
Rút gọn:
\(C=\left(\dfrac{1}{x+1}-\dfrac{x+3\sqrt{x}-4}{\left(x^2-1\right)\left(\sqrt{x}+4\right)}\right):\dfrac{\sqrt{x}+1}{x^2\sqrt{x}+x^2-\sqrt{x}-1}\)
cho biểu thức A=\(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}-3}\)
rút gọn A và tìm giá trị lớn nhất của A
Rút gọn:
\(A=1-\left[\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}+\dfrac{2x-1+\sqrt{x}}{1-x}\right]\cdot\left[\dfrac{\left(x-\sqrt{x}\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\right]\)
\(B=\left[1:\frac{2x-1}{x-x^2}\right]\cdot\left[\frac{2x^3+x^2-x}{x^3-1}-2-\frac{1}{x-1}\right]\)