Đáp án là D.
Ta có
f n = n 2 + 1 + n 2 + 1 = n 2 + 1 2 + 2 n . n 2 + 1 + n 2 + 1 = n 2 + 1 n 2 + 1 + 2 n + 1
= n 2 + 1 n + 1 2 + 1
Do đó: f 2 n − 1 f 2 n = 2 n − 1 2 + 1 2 n 2 + 1 2 n 2 + 1 2 n + 1 2 + 1 = 2 n − 1 2 + 1 2 n + 1 2 + 1
Suy ra
u n = f 1 . f 3 . f 5 ... f 2 n − 1 f 2 . f 4 . f 6 ... f 2 n = f 1 f 2 ⋅ f 3 f 4 ⋅ f 5 f 6 ⋅ ⋅ ⋅ f 2 n − 1 f 2 n
= 1 2 + 1 3 2 + 1 ⋅ 3 2 + 1 5 2 + 1 ⋅ 5 2 + 1 7 2 + 1 ⋅ ⋅ ⋅ 2 n − 1 2 + 1 2 n + 1 2 + 1 = 2 2 n + 1 2 + 1 = 1 2 n 2 + 2 n + 1
⇒ n u n = n . 1 2 n 2 + 2 n + 1
⇒ lim n u n = 1 2