a.
\(x=9\Rightarrow A=\dfrac{9+8}{\sqrt{9}-1}=\dfrac{17}{2}\)
b.
\(B=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{5\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{8\sqrt{x}-6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)+5\left(\sqrt{x}-1\right)-\left(8\sqrt{x}-6\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
c.
\(P=AB=\dfrac{x+8}{\sqrt{x}-1}.\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{x+8}{\sqrt{x}+1}=\dfrac{x-1+9}{\sqrt{x}+1}\)
\(P=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+9}{\sqrt{x}+1}=\sqrt{x}-1+\dfrac{9}{\sqrt{x}+1}\)
\(P=\sqrt{x}+1+\dfrac{9}{\sqrt{x}+1}-2\)
\(P\ge2\sqrt{\dfrac{9\left(\sqrt{x}+1\right)}{\sqrt{x}+1}}-2=4\)
\(P_{min}=4\) khi \(\sqrt{x}+1=3\Rightarrow x=4\)
1: Thay x=9 vào A, ta được:
\(A=\dfrac{9+8}{\sqrt{9}-1}=\dfrac{17}{3-1}=\dfrac{17}{2}\)
2: \(B=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{5}{\sqrt{x}+1}-\dfrac{8\sqrt{x}-6}{x-1}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{5}{\sqrt{x}+1}-\dfrac{8\sqrt{x}-6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)+5\left(\sqrt{x}-1\right)-8\sqrt{x}+6}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x+\sqrt{x}+5\sqrt{x}-5-8\sqrt{x}+6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
3: \(P=A\cdot B=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\cdot\dfrac{x+8}{\sqrt{x}-1}=\dfrac{x+8}{\sqrt{x}+1}\)
\(=\dfrac{x-1+9}{\sqrt{x}+1}=\sqrt{x}-1+\dfrac{9}{\sqrt{x}+1}\)
\(=\sqrt{x}+1+\dfrac{9}{\sqrt{x}+1}-2\)
\(\sqrt{x}+1+\dfrac{9}{\sqrt{x}+1}>=2\cdot\sqrt{\left(\sqrt{x}+1\right)\cdot\dfrac{9}{\sqrt{x}+1}}=6\)
=>\(P=\sqrt{x}+1+\dfrac{9}{\sqrt{x}+1}-2>=6-2=4\)
Dấu '=' xảy ra khi \(\sqrt{x}+1=3\)
=>x=4

cíu tui cíu tui
cíu tui cíu tui
cíu tui cíu tui



cíu cíu
cíu lẹ cíu lẹ