Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
mynameisbro

cíu tui loading...

Nguyễn Việt Lâm
5 tháng 5 2024 lúc 18:27

a.

\(x=9\Rightarrow A=\dfrac{9+8}{\sqrt{9}-1}=\dfrac{17}{2}\)

b.

\(B=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{5\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{8\sqrt{x}-6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)+5\left(\sqrt{x}-1\right)-\left(8\sqrt{x}-6\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

c.

\(P=AB=\dfrac{x+8}{\sqrt{x}-1}.\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{x+8}{\sqrt{x}+1}=\dfrac{x-1+9}{\sqrt{x}+1}\)

\(P=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+9}{\sqrt{x}+1}=\sqrt{x}-1+\dfrac{9}{\sqrt{x}+1}\)

\(P=\sqrt{x}+1+\dfrac{9}{\sqrt{x}+1}-2\)

\(P\ge2\sqrt{\dfrac{9\left(\sqrt{x}+1\right)}{\sqrt{x}+1}}-2=4\)

\(P_{min}=4\) khi \(\sqrt{x}+1=3\Rightarrow x=4\)

Nguyễn Lê Phước Thịnh
5 tháng 5 2024 lúc 18:28

1: Thay x=9 vào A, ta được:

\(A=\dfrac{9+8}{\sqrt{9}-1}=\dfrac{17}{3-1}=\dfrac{17}{2}\)

2: \(B=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{5}{\sqrt{x}+1}-\dfrac{8\sqrt{x}-6}{x-1}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{5}{\sqrt{x}+1}-\dfrac{8\sqrt{x}-6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)+5\left(\sqrt{x}-1\right)-8\sqrt{x}+6}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+\sqrt{x}+5\sqrt{x}-5-8\sqrt{x}+6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

3: \(P=A\cdot B=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\cdot\dfrac{x+8}{\sqrt{x}-1}=\dfrac{x+8}{\sqrt{x}+1}\)

\(=\dfrac{x-1+9}{\sqrt{x}+1}=\sqrt{x}-1+\dfrac{9}{\sqrt{x}+1}\)

\(=\sqrt{x}+1+\dfrac{9}{\sqrt{x}+1}-2\)

\(\sqrt{x}+1+\dfrac{9}{\sqrt{x}+1}>=2\cdot\sqrt{\left(\sqrt{x}+1\right)\cdot\dfrac{9}{\sqrt{x}+1}}=6\)

=>\(P=\sqrt{x}+1+\dfrac{9}{\sqrt{x}+1}-2>=6-2=4\)

Dấu '=' xảy ra khi \(\sqrt{x}+1=3\)

=>x=4


Các câu hỏi tương tự
mynameisbro
Xem chi tiết
mynameisbro
Xem chi tiết
mynameisbro
Xem chi tiết
mynameisbro
Xem chi tiết
mynameisbro
Xem chi tiết
mynameisbro
Xem chi tiết
mynameisbro
Xem chi tiết
Qtrang
Xem chi tiết
mynameisbro
mynameisbro
Xem chi tiết