a)Gọi ƯCLN(n+2;n+3)=d
=>n+2 chia hết cho d; n+3 chia hết cho d
=>n+3-(n+2) chia hết cho d
=>1 chia hết cho d hay d=1
Do đó, ƯCLN(n+2;n+3)=1
Vậy n+2; n+3 là ư số nguyên tố cùng nhau
b)Gọi ƯCLN(2n+3;3n+5)=a
=>2n+3 chia hết cho a; 3n+5 chia hết cho a
3(2n+3) chia hết cho a; 2(3n+5) chia hết cho a
6n+9 chia hết cho a; 6n+10 chia hết cho a
=>6n+10-(6n+9) chia hết cho a
=> 1 chia hết cho a hay a=1
Do đó, ƯCLN(2n+3;3n+5)=1
Vậy 2n+3;3n+5 là 2 số nguyên tố cùng nhau
a) gọi UCLN(n+2;n+3)=d
ta có :
n+2 chia hết cho d
n+3 chia hết cho d
=>(n+3)-(n+2) chia hết cho d
=>1 chia hết cho d
=>d=1
=>UCLN(n+2;n+3)=1
=>nguyên tố cùng nhau
b)
gọi UCLN(2n+3;3n+5)=d
ta có : 2n+3 chia hết cho d =>3(2n+3) chia hết cho d =>6n+9 chia hết cho d
3n+5 chia hết cho d => 2(3n+5) chia hết cho d =>6n+10 chia hết cho d
=>(6n+10)-(6n+9) chia hết cho d
=>1 chia hết cho d
=>d=1
=>UCLN(2n+3;3n+5)=1
=>nguyên tố cùng nhau
=>ĐPCM
nhớ tick cho mình nhé
Gọi ƯCLN của 2 số trên là d
=> n+2 chia hết cho d
n+3 chia hết cho d
=> (n+3) - (n+2) chia hết cho d
=> 1 chia hết cho d => d=1
Vậy ......