Câu 1 :tìm x\(\sqrt{x-2\sqrt{3x-9}}\) =\(2\sqrt{x-3}\)
câu 2:chờ a,b,c,d là các số nguyên thỏa mãn a<b<c<d và a+b=b+c .CMR a^2 +b^2 +c^2+d^2 là tổng 3 số chính phương
câu 3 :cho tam giác vuông ABC ( A=90) ,AD là phân giác của A ( D thuộc BV chứng minh \(\frac{AD}{AB}+\frac{AD}{AC}=\sqrt{2}\)
câu4 :Tìm tất cả số tự nhiên sao cho \(n^2+17\) là số chính phương
Câu 5: cho 3 số dương x,y,z tổng =1 ,CMR : \(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}>hoặc=1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\) làm giúp mình cái ,THANK YOU SO MUCH ,làm đc bão like
1/ Cho các số thực dương a,b với a khác b. Chứng minh đẳng thức sau:
\(\frac{\frac{\left(a-b\right)^3}{\left(\sqrt{a}-\sqrt{b}\right)^3}-b\sqrt{b}+2a\sqrt{a}}{a\sqrt{a}-b\sqrt{b}}+\frac{3a+3\sqrt{ab}}{b-a}=0\)
2/ Cho hai số thực a,b sao cho \(\left|a\right|\ne\left|b\right|\) và ab \(\ne\) 0 thỏa mãn điều kiện:
\(\frac{a-b}{a^2+ab}+\frac{a+b}{a^2-ab}=\frac{3a-b}{a^2-b^2}\). Tính giá trị của biểu thức \(P=\frac{a^3+2a^2b+3b^3}{2a^3+ab^2+b^3}\)
Cho các số : \(x=2a+b-2\sqrt{cd}\)
\(y=2b+c-2\sqrt{ad}\)
\(z=2c+d-2\sqrt{ab}\)
\(t=2d+a-2\sqrt{bc}\)
với a,b,c,d >0 . CMR : tồn tại ít nhất có 2 số dương trong 4 số trên
Bài 1
1) Cho a,b,c a+b\(\ge\)c không âm thỏa mãn \(\sqrt{a}\)+\(\sqrt{b}\) -\(\sqrt{c}\) =\(\sqrt{a+b-c}\)
CHỨNG MINH RẰNG: \(\sqrt[2011]{a}\)+\(\sqrt[2011]{b}\) - \(\sqrt[2011]{c}\) = \(\sqrt[2011]{a+b-c}\)
2) Chứng minh bất đẳng thức :\(\sqrt{ab}\) \(\ge\) \(\sqrt{c\left(a-c\right)}\) + \(\sqrt{c\left(b-c\right)}\) (với a>c, b>c, c>0)
Bài 2
1) Giải phương trình \(\sqrt{x-2}\)+ \(\sqrt{4-x}\) = 2x\(^2\) -5x-1
2) Tìm giá trị lớn nhất của biểu thức M= \(\frac{y\sqrt{x-1}+x\sqrt{y-4}}{xy}\)
Bài 3 :Tìm các số tự nhiên x,y sao cho x\(^2\) +3\(^y\)=3026
Cho a,b,c là các số dương thỏa mãn \(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}=1\)
Chứng minh rằng \(ab+bc+ac\ge\frac{abc}{3}\)
Cho các số x,y,z thỏa mãn ( Chú ý : A^2+B^2+C^2=0 <=> A=B=C=0)
a, \(\left(2x-y\right)^2+\left(y-2\right)^2+\sqrt{x+y+z}=0\)
b, \(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)
GIúp mình với
Rút gọn các biểu thức sau :
a)\(\left[\left(a-b\right)\sqrt{\frac{a+b}{a-b}}+a-b\right]\left(a-b\right)\left(\sqrt{\frac{a+b}{a-b}}-1\right)\)với a > b > 0
b)\(\frac{\sqrt{7-4\sqrt{3}}}{\sqrt{2-\sqrt{3}}}.\sqrt{2+\sqrt{3}}\)
Chứng minh rằng
\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}=2\)
Cho \(a+b+c=0;a,b,c\ne0\)
Chứng minh hằng đẳng thức:
\(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}=\left|\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right|\)
Cho 3 số thực dương a,b,c thỏa mãn : \(a+b+c=\sqrt{a}+\sqrt{b}+\sqrt{c}=2\) . CMR :
\(\frac{\sqrt{a}}{1+a}+\frac{\sqrt{b}}{1+b}+\frac{\sqrt{c}}{1+c}=\frac{2}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)