Chứng minh rằng : Nếu a thuộc N, a>1 thìA=\(\left(a^2+a+1\right)\left(a^2+a+2\right)-12\) thì A la hợp số.
CHỨNG MINH RẰNG NẾU A THUỘC N, A>1 THÌ A=(A^2 +A+1)(A^2+A+2)-12 LÀ HỢP SỐ
NHANH LÊN MÌNH ĐANG CẦN GẤP CẢM ƠN
a-Chứng minh rằng:n^2(n+1)+2n(n+1) chia hết 6 với mọi n thuộc Z
b-Cho x,y là 2 số khác nhau
Chứng minh rằng:nếu x(x-y)-10(y-x)^2=0 thì 9x=10y
giúp mk đi..gấp lắm òi....help me!!!!
Chứng minh rằng: Nếu \(a\inℕ\), \(a>1\) thì \(A=\left(a^2+a+1\right)\left(a^2+a+2\right)-12\) là hợp số.
Bài 1 cho a, b,c,d thuộc N* thỏa mãn a^2+b^2=C^2+d^2
chứng minh : a+b+c+d là hợp số
mọi người giúp mình với!
CMR nếu a thuộc N , a>1 thì A=(a2+a+1)(a2+a+2)-12 là hợp số
1. chứng minh rằng với mọi số nguyên a,b,c,d , tích :
( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d ) chia hết cho 12
2. chứng minh rằng số A = \(2^{2^{2n+1}}+3\) là hợp số với mọi số nguyên dương n
giúp mình nha
giúp mình câu này nhé mọi n:
1:chứng minh với mọi n thuộc N* thì n^3 +n+2 là hợp số
2: cho a^2 +b^2+c^2=a^3+b^3+c^3+1. Tính S=a^2+b^2012 +c^2013
Chứng minh rằng:
Nếu (a - b)2 + (b - c)2 + (c - a)2 = (a + b - 2c)2 + (b + c - 2a)2 + (c + a - 2b)2 thì a = b = c.