Lời giải:
\(Q=(x^2-1)\left[\frac{x+1-(x-1)}{(x-1)(x+1)}+1\right]=(x^2-1)\left(\frac{2}{x^2-1}+1\right)=(x^2-1).\frac{x^2+1}{x^2-1}\)
\(=x^2+1\geq 1>0\) với mọi $x\neq \pm 1$
Vậy $Q$ luôn dương với mọi $x\neq \pm 1$ (đpcm)
Ta có: \(Q=\left(x^2-1\right)\left(\dfrac{1}{x-1}-\dfrac{1}{x+1}+1\right)\)
\(=\left(x-1\right)\left(x+1\right)\cdot\dfrac{x+1-x+1+x^2-1}{\left(x-1\right)\left(x+1\right)}\)
\(=x^2+1>0\forall x\)