Áp dụng BĐT Cô - si cho vế trái ta có
\(\Rightarrow\left\{\begin{matrix}\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge\frac{2a}{c}\\\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\\\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge\frac{2c}{b}\end{matrix}\right.\)
Cộng theo từng vế ta có:
\(\frac{a^2}{b^2}+\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}+\frac{c^2}{a^2}\ge\frac{2a}{c}+\frac{2b}{a}+\frac{2c}{b}\)
\(\Rightarrow2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\right)\)
\(\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\) ( đpcm )