chứng minh :
a3 +b3 =(a+b).(a2 -ab +b2)
a3 -b3 =(a-b).(a2 +ab +b2)
2. Chứng minh rằng:
a. a3+ b3 = (a + b)3 - 3ab (a + b)
b. a3+ b3 + c3 - 3abc = (a + b + c) (a2 + b2 c2 - ab - bc - ca)
Chứng minh:
a) ( a 2 - ab + b 2 ) ( a + b ) = a 3 + b 3 ;
b) ( a 3 + a 2 b + ab 2 + b 3 ) ( a - b ) = a 4 - b 4 ;
Với a;b>0.Hãy chứng minh
\(\frac{1}{a3}+\frac{a3}{b3}+b3>=\frac{1}{a}+\frac{a}{b}+b\)
Chứng minh các đẳng thức:
a) a 3 + b 3 = ( a + b ) 3 − 3 a b ( a + b ) ;
b) a 3 − b 3 = ( a − b ) 3 + 3 ab ( a − b ) .
Chứng minh rằng: a 3 + b 3 = (a + b)[ a - b 2 + ab]
Cho a + b + c = 0. Chứng minh a 3 + b 3 + c 3 = 3 a b c
Biết a + b + c = 0. Chứng minh a 3 + b 3 + c 3 = 3 a b c .
Cho a + b + c = 0. Chứng minh : (a2 + b2 + c2 )/2 * (a3 + b3 + c3 )/3 = (a5 + b5 + c5 )/5
Cho a, b, c > 0 . Chứng minh rằng a3 +b3 +c3 >=3abc.