giải hệ pt \(\int\limits^{x\sqrt{y-1}+y\sqrt{x-1}=xy}_{\left(x-1\right)\sqrt{y}+\left(y-1\right)\sqrt{x}=2\sqrt{y}}\)
Giải hệ pt:
1.\(\sqrt[4]{x}\left(\left\{\left\{\frac{1}{4}+\frac{2\sqrt{x}+\sqrt{y}}{x+y}\right\}\right\}\right)=2\)
2.\(\sqrt[4]{y}\left(\frac{1}{4}-\frac{2\sqrt{x}+\sqrt{y}}{x+y}\right)=1\)
SOS
với x;y nguyên dương thỏa mãn \(\sqrt{xy}+\frac{1}{\sqrt{xy}}=\frac{5}{2}\) và \(\sqrt{x}+\sqrt{y}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=\frac{9}{2}\) tìm x;y
chứng minh rằng : \(\frac{x-2\sqrt{x}}{\sqrt{x}-2}-\frac{x+\sqrt{x}}{\sqrt{x}}=-1\left(x>0,x\ne4\right)\)
Cho là nghiệm của phương trình . Khi đó ?..
Cho là nghiệm của phương trình . Khi đó
Cho biểu thức:\(A=1+\left(\frac{2x+\sqrt{x}-1}{1-x}-\frac{2x\sqrt{x}-\sqrt{x}+x}{1-x\sqrt{x}}\right)\frac{x-\sqrt{x}}{2\sqrt{x}-1}\)
a) tìm các giá trị của x để \(A=\frac{6-\sqrt{6}}{5}\)
b)chứng minh rằng \(A>\frac{2}{3}\)với mọi x thỏa mãn \(x\ge0,x\ne1,x\ne\frac{1}{4}\)
giải hệ \(\begin{cases}2y^2-3y+1+\sqrt{y-1}=x^2+\sqrt{x}+xy\\\sqrt{2x+y}-\sqrt{-3x+2y+4}+3x^2-14x-8=0\end{cases}\)
So sánh x và y biết:
\(x=\left(1-\frac{1}{\sqrt{4}}\right).\left(1-\frac{1}{\sqrt{16}}\right).\left(1-\frac{1}{\sqrt{36}}\right).\left(1-\frac{1}{\sqrt{64}}\right).\left(1-\frac{1}{\sqrt{100}}\right)\)và y = \(\sqrt{0,1}\)