với x,y,z>0 cmr với x,y,z>0 cmr ( x^2 + 5 )( y^2 + 5 )( z^2 + 5 ) >= 6( x + y + z + 3)^2
1; phân tích đa thức thành nhâ tử
(x+y+z)^3-(x+y)^3-(y+z)^3-(z+x)^3
2; cho x+y+z=0. CMR: 2*(x^5+y^5+z^5)=5*x*y*z*(x^2+y^2+z^2)
3;CMR a=y^4+(x+y)*(x+2*y)*(x+3*y)*(x+4*y).
AI LÀM ĐƯỢC MÌNH CHO 5 LIKE
Cho x+y+z=0 cmr
5(x3 + y3+z3)( x2 + y2 + z2)= 6 ( x5 + y5 + z5)
1.Cho x+y+z=0. CMR:
a) \(5\left(x^3+y^3+z^3\right)\left(x^2+y^2+z^2\right)=6\left(x^5+y^5+z^5\right)\)
b) \(x^7+y^7+z^7=7xyz\left(x^2y^2+y^2z^2+z^2x^2\right)\)
c) \(10\left(x^7+y^7+z^7\right)=7\left(x^2+y^2+z^2\right)\left(x^5+y^5+z^5\right)\)
d) \(2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\)
2. Tìm n∈ N để biểu thức sau là số nguyên tố
a) \(A=n^3-4n^2-4n-1\)
b) \(B=n^3-6n^2+9n-2\)
c) \(C=n^{1975}+n^{1973}+1\)
cho x + y+z=0. cmr 2(x^5+y^5+z^5)=5xyz(x^2+y^2+z^2)
cho a+b+c=0;a^2+b^2+c^2=0;a^3+b^3+c^3=0. tính a+b^2+c^3
Cho x+y+z = 0. CMR :
a) 5( x3 + y3 + z3 ) (x2 + y2 + z2) = 6(x5 + y5 + z5 )
b) 2( x5 + y5 + z5 ) = 5xyz( x2 + y2 + z2 )
Cho \(x+y+z=0\). Chứng minh rằng :
\(5\left(x^3+y^3+z^3\right)\left(x^2+y^2+z^2\right)=6\left(x^5+y^5+z^5\right)\)
Cho x+y+z=0. CMR 2(x^5+y^5+z^5)=5xyz(x^2+y^2+z^2)
giả sử các số thực x y z đều lớn hơn -1 và thỏa mãn điều kiện x^3+y^3+z^3>=x^2+y^2+z^2 cmr
\(x^5+y^5+z^5>=x^2+y^2+z^2\)