Ta có \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\Rightarrow ab+bc+ca=abc\)
Có: \(\dfrac{a^2}{a+bc}=\dfrac{a^3}{a^2+abc}=\dfrac{a^3}{a^2+ab+ac+bc}=\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}\)
Áp dụng bđt cô si cho 3 số dương ta có:
\(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge3\sqrt[3]{\dfrac{a^3\left(a+b\right)\left(a+c\right)}{\left(a+b\right)\left(a+c\right)8.8}}=\dfrac{3a}{4}\)
Cmtt: ....
Cộng vế ta được:
(Đpcm)
Dấu = xảy ra khi a=b=c=3