Cho x,y,z>0;\(x+y+z\le\dfrac{3}{2}\).CMR
\(\sqrt{x^2+\dfrac{1}{x^2}}+\sqrt{y^2+\dfrac{1}{y^2}}+\sqrt{z^2+\dfrac{1}{z^2}}\ge\dfrac{3}{2}\sqrt{17}\)
Mn giúp e với (có thể dùng bunhiacopxki nhé mn)
cho x,y,z>0 thỏa mãn \(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\).CMR \(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\dfrac{3}{2}\sqrt{xyz}\)
cho x,y,z>0 thỏa mãn \(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}=1\\\).CMR
\(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\dfrac{3}{2}\sqrt{xyz}\)
Cho x,y,z>0 và x+y+z=1.CMR:\(\sqrt{x^2+\dfrac{1}{y^2}}+\sqrt{y^2+\dfrac{1}{z^2}}\sqrt{z^2+\dfrac{1}{x^2}}>=\sqrt{82}\)
Cho x, y, z > 0 thỏa mãn : x + y + z = xyz. CMR :
\(\dfrac{1+\sqrt{1+x^2}}{x}+\dfrac{1+\sqrt{1+y^2}}{y}+\dfrac{1+\sqrt{1+z^2}}{z}\le xyz\)
cho x,y,z>0 và x3+y3+z3=1.
CMR:\(\dfrac{x^2}{\sqrt{1-x^2}}+\dfrac{y^2}{\sqrt{1-y^2}}+\dfrac{z^2}{\sqrt{1-z^2}}\ge2\)
Cho x, y, z >0 thỏa mãn : xyz=1. CMR :
\(\dfrac{\sqrt{1+x^3+y^3}}{xy}+\dfrac{\sqrt{1+y^3+z^3}}{yz}+\dfrac{\sqrt{1+z^2+x^2}}{xz}\ge3\sqrt{3}\)
Cho x, y, z > 0 thoả mãn x+y+z=2. Tìm GTNN của các biểu thức:
a) \(A=\sqrt{x^2+\dfrac{1}{x^2}}+\sqrt{y^2+\dfrac{1}{y^2}}+\sqrt{z^2+\dfrac{1}{z^2}}\)
b) \(B=\sqrt{x^2+\dfrac{1}{y^2}+\dfrac{1}{z^2}}+\sqrt{y^2+\dfrac{1}{z^2}+\dfrac{1}{x^2}}+\sqrt{z^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}}\)
c) \(C=\sqrt{2x^2+\dfrac{3}{y^2}+\dfrac{4}{z}}+\sqrt{2y^2+\dfrac{3}{z^2}+\dfrac{4}{x^2}}+\sqrt{2z^2+\dfrac{3}{x^2}+\dfrac{4}{y^2}}\)
cho x,y,z >0 và x+y+z=1
tìm Min \(P=\sqrt{x^2+\dfrac{1}{y^2}}+\sqrt{y^2+\dfrac{1}{z^2}}+\sqrt{z^2+\dfrac{1}{x^2}}\)