x+y>=2 căn xy
y+z>=2 căn yz
x+z>=2 căn xz
=>(x+y)(y+z)(x+z)>=8xyz
x+y>=2 căn xy
y+z>=2 căn yz
x+z>=2 căn xz
=>(x+y)(y+z)(x+z)>=8xyz
Cho các số x, y, z\(\ge\)0 và x+ y+ z= 1. Chứng minh rằng: x+ 2y+ z\(\ge\)4(1-x)(1-y)(1-z).
cho x, y, z \(\ge\)0. CM (x+y)(y+z)(z+x) \(\ge\)8xyz
Cho a^2 + b^2 \(\le\)2 .CM a+b bé hơn hoặc bằng 2
Cho x,y,z>-1 thỏa mãn
\(x^3+y^3+z^3\ge x^2+y^2+z^2\)
Chứng minh rằng
\(x^5+y^5+z^5\ge x^2+y^2+z^2\)
Cho x,y,z>0. Chứng minh rằng:
\(\left(\frac{x}{x+y}\right)^2+\left(\frac{y}{y+z}\right)^2+\left(\frac{z}{z+x}\right)^2\ge\frac{3}{4}\)
Bất đẳng thức chọn HSG nhé
Cho x\(\ge\)0,y\(\ge\)0,z\(\ge\)0 và x+y+x=1.Chứng minh rằng xy+yz+xz-2xyz\(\le\)\(\frac{7}{27}\)
Chứng minh rằng:Nếu x+y+z\(\ge\)0 thì x^3+y^3+z^3\(\ge\)3xyz
Chứng minh các bất đẳng thức sau với x, y, z > 0
a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)
b) \(x^3+y^3\ge\dfrac{\left(x+y\right)^3}{4}\)
c) \(x^4+y^4\ge\dfrac{\left(x+y\right)^4}{8}\)
e) \(x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}\)
f) \(x^3+y^3+z^3\ge3xyz\)
Cho x,y,z>0 và \(xyz\ge x+y+z+2\). Tìm Min(x+y+z)
\(\)Nếu \(z\ge y\ge x>0\)thì \(y\left(\frac{1}{x}+\frac{1}{z}\right)+\frac{1}{y}\left(x+z\right)\le\left(x+z\right)\left(\frac{1}{x}+\frac{1}{z}\right)\)