Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Conan Kudo

Cho x4/a+y4/b=1/a+b, x2+y2=1

Chứng minh: x2018/a1009+y2018/b1009=2/(a+b)1009

ST
12 tháng 7 2018 lúc 13:22

Ta có: \(x^2+y^2=1\Leftrightarrow\left(x^2+y^2\right)^2=1\)  (1)

Thay (1) vào \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\) ta được:

\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\Leftrightarrow\frac{x^4b+y^4a}{ab}=\frac{x^4+2x^2y^2+y^4}{a+b}\)

\(\Leftrightarrow\left(x^4b+y^4a\right)\left(a+b\right)=\left(x^4+2x^2y^2+y^4\right)ab\)

\(\Leftrightarrow x^4ab+x^4b^2+y^4a^2+y^4ab=x^4ab+2x^2y^2ab+y^4ab\)

\(\Leftrightarrow x^4b^2+y^4a^2=2x^2y^2ab\)

\(\Leftrightarrow\left(x^2b\right)^2-2x^2y^2ab+\left(y^2a\right)^2=0\)

\(\Leftrightarrow\left(x^2b-y^2a\right)^2=0\)

\(\Leftrightarrow x^2b-y^2a=0\)

\(\Leftrightarrow x^2b=y^2a\)

\(\Rightarrow\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)

\(\Rightarrow\left(\frac{x^2}{a}\right)^{1009}=\left(\frac{y^2}{b}\right)^{1009}=\left(\frac{1}{a+b}\right)^{1009}\)

\(\Rightarrow\frac{x^{2018}}{a^{1009}}=\frac{y^{2018}}{b^{1009}}=\frac{1}{\left(a+b\right)^{1009}}\)

\(\Rightarrow\frac{x^{2018}}{a^{1009}}+\frac{y^{2018}}{b^{1009}}=\frac{1}{\left(a+b\right)^{1009}}+\frac{1}{\left(a+b\right)^{1009}}=\frac{2}{\left(a+b\right)^{1009}}\left(đpcm\right)\)

Ghost Demon
4 tháng 8 2019 lúc 20:25

đè bài của t sái


Các câu hỏi tương tự
nguyễn ngọc khánh
Xem chi tiết
Alicia
Xem chi tiết
HẾT ĐAM MÊ PHÁ HOC24 ÒI
Xem chi tiết
nguyễn hữu kim
Xem chi tiết
Mona Megistus
Xem chi tiết
nguyễn hữu kim
Xem chi tiết
nguyễn hữu kim
Xem chi tiết
Anh Đức
Xem chi tiết
anhmiing
Xem chi tiết
Pham Trong Bach
Xem chi tiết