\(\text{Δ}=\left(-m\right)^2-4\left(m-5\right)\)
\(=m^2-4m+20\)
\(=m^2-4m+4+16=\left(m-2\right)^2+16>0\forall m\)
=>Phương trình luôn có 2 nghiệm phân biệt
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(-m\right)}{1}=m\\x_1\cdot x_2=\dfrac{c}{a}=m-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+2x_2=1\\x_1+x_2=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=1-m\\x_1=m-x_2=m-1+m=2m-1\end{matrix}\right.\)
\(x_1\cdot x_2=m-5\)
=>\(\left(1-m\right)\left(2m-1\right)=m-5\)
=>\(2m-1-2m^2+m-m+5=0\)
=>\(-2m^2+2m+4=0\)
=>\(m^2-m-2=0\)
=>(m-2)(m+1)=0
=>\(\left[{}\begin{matrix}m-2=0\\m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\left(nhận\right)\\m=-1\left(nhận\right)\end{matrix}\right.\)