Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lizy

3. cho `x^2 -5x+m+2=0`

Gọi `x_1 ;x_2` là 2 nghiệm pb của pt. tìm max \(P=x_1^2x_2+x_1x_2^2-x_1^2x_2^2-4\)

Nguyễn Lê Phước Thịnh
18 tháng 1 2024 lúc 20:07

\(\text{Δ}=\left(-5\right)^2-4\cdot1\cdot\left(m+2\right)\)

\(=25-4m-8=-4m+17\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

=>-4m+17>0

=>-4m>-17

=>\(m< \dfrac{17}{4}\)

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(-5\right)}{1}=5\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m+2}{1}=m+2\end{matrix}\right.\)

\(P=x_1^2\cdot x_2+x_1\cdot x_2^2-x_1^2\cdot x_2^2-4\)

\(=x_1x_2\left(x_1+x_2\right)-\left(x_1x_2\right)^2-4\)

\(=5\left(m+2\right)-\left(m+2\right)^2-4\)

\(=5m+10-m^2-4m-4-4\)

\(=-m^2+m+2\)

\(=-\left(m^2-m-2\right)\)

\(=-\left(m^2-m+\dfrac{1}{4}-\dfrac{9}{4}\right)\)

\(=-\left(m-\dfrac{1}{2}\right)^2+\dfrac{9}{4}< =\dfrac{9}{4}\forall m\)

Dấu '=' xảy ra khi \(m=\dfrac{1}{2}\)

Nguyễn Việt Lâm
18 tháng 1 2024 lúc 20:08

\(\Delta=25-4\left(m+2\right)=17-4m>0\Rightarrow m< \dfrac{17}{4}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m+2\end{matrix}\right.\)

\(P=x_1x_2\left(x_1+x_2\right)-\left(x_1x_2\right)^2-4\)

\(=5\left(m+2\right)-\left(m+2\right)^2-4\)

\(=-\left[\left(m+2\right)-\dfrac{5}{2}\right]^2+\dfrac{9}{4}\le\dfrac{9}{4}\)

\(P_{max}=\dfrac{9}{4}\) khi \(m+2=\dfrac{5}{2}\Rightarrow m=\dfrac{1}{2}\)


Các câu hỏi tương tự
Lizy
Xem chi tiết
Lương Ngọc Anh
Xem chi tiết
kênh youtube: chaau high...
Xem chi tiết
kênh youtube: chaau high...
Xem chi tiết
Lizy
Xem chi tiết
Lương Ngọc Anh
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
Vũ Như Mai
Xem chi tiết
Cù Nhật Hoàng
Xem chi tiết