Đáp án C
log 3 2 x + y + 1 x + y = x + 2 y ⇔ log 3 2 x + y + 1 − log 3 x + y = 3 x + y − 2 x + y + 1 + 1 ⇔ log 3 2 x + y + 1 + 2 x + y + 1 = log 3 3 x + y + 3 x + y *
Xét hàm số f t = log 3 t + t trên khoảng 0 ; + ∞ ⇒ f t là hàm số đồng biến trên 0 ; + ∞
Mà * ⇔ f 2 x + y + 1 = f 3 x + 3 y ⇔ 2 x + y + 1 = 3 x + 3 y ⇔ x + 2 y = 1
Đặt a = y > 0 ⇔ y = a 2 ⇔ x = 1 − 2 y = 1 − 2 a 2 , khi đó T = g a = 1 1 − 2 a 2 + 2 a
Xét hàm số g a = 1 1 − 2 a 2 + 2 a trên khoảng 0 ; 1 2 , suy ra min 0 ; 1 2 g a = 6
Vậy giá trị nhỏ nhất cần tìm là T min = 6