Cho x ,y thỏa mãn \(x^2+y^2=1\) .Tìm GTLN,GTNN của biểu thức
S=\(\sqrt{1+x}+\sqrt{1+y}\)
cho 3 số x,y,z không âm thỏa mãn x3+y3+z3=3. Tìm GTLN của A=3(xy+yz+zx)-xyz
Cho x,y,z thỏa mãn x+y+z=1
Tìm GTLN của Q=\(\sqrt{2x^2+x+1}+\sqrt{2y^2+y+1}+\sqrt{2z^2+z+1}\)
Cho ba số thực dương x, y, z thỏa mãn: \(x+2y+3z=2\). Tìm GTLN của biểu thức: \(S=\sqrt{\dfrac{xy}{xy+3z}+}\sqrt{\dfrac{3yz}{3yz+x}+}\sqrt{\dfrac{3xz}{3xz+4y}}\)
Cho x;y là 2 số thực dương thỏa mãn \(x+2y\le3\). Tìm GTLN của \(S=\sqrt{x+3}+2\sqrt{y+3}\)
Với các số thực x>1, y>2, z>3 thỏa mãn x+y+z= 28 tìm GTLN của biểu thức
\(P=\sqrt{x-1}+2\sqrt{y-4}+3\sqrt{z-9}\)
Cho các số dương x,y,z thỏa mãn \(x+y+z\le3\). TÌm GTLN của biểu thức:
\(A=\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
Cho x, y thay đổi thỏa mãn 0<x<1, 0<y<1.
Tìm GTLN của biểu thức: P=\(x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}\)
Cho x, y, z là các số thực dương thỏa mãn :x + y + z = xyz
Tìm GTLN của \(P=\frac{2}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+\frac{1}{\sqrt{1+z^2}}\)