Vì tứ giác ABCD là hình bình hành
=> \(\left\{{}\begin{matrix}AB=DC\\AB//DC\end{matrix}\right.\)
=> \(\overrightarrow{AB}=\overrightarrow{DC}\)
Vì tứ giác ABCD là hình bình hành
=> \(\left\{{}\begin{matrix}AB=DC\\AB//DC\end{matrix}\right.\)
=> \(\overrightarrow{AB}=\overrightarrow{DC}\)
Cho tứ giác ABCD. Gọi M,N,P,Q lần lượt là trung điểm của các cạnh AB,CD,AD,BC. Chứng minh:
a) vectơ MP = vectơ QN
b) vectơ MQ = vectơ PN
Bài 1 : Cho tứ giác ABCD chứng minh nếu vectơ AB = vectơ DC thì vectơ AD = vectơ BC
Bài 2: Cho tứ giác ABCD chứng minh tứ giác đó là hình bình hành khi và chỉ khi vectơ AB = vectơ DC
Cho tứ giác ABCD, chứng minh rằng nếu \(\overrightarrow{AB}=\overrightarrow{DC}\) và \(\overrightarrow{AD}=\overrightarrow{BC}\).
Cho tam giác ABC có D,E,F lần lượt là trung điểm của BC, CA, AB. Chứng minh vectơ EF = vectơ CD theo 2 cách.
Cho tứ giác ABCD.Chứng minh rằng tứ giác đó là hình bình hành khi và chỉ khi \(\overrightarrow{AB}\)=\(\overrightarrow{DC}\)
Cho hình bình hành ABCD. Đẳng thức nào sau đây đúng?
A. \(\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AB}\)
B. \(\overrightarrow{AB}+\overrightarrow{AD}=\overrightarrow{AC}\)
C. \(\overrightarrow{AC}—\overrightarrow{DB}=2\overrightarrow{CD}\)
D. \(\overrightarrow{AC}-\overrightarrow{AD}=\overrightarrow{CD}\)
Cho tg ABCD có M, N, P, Q lần lượt là trung điểm các cạnh AB, BC, CD, DA, CM. CM:
a) \(\overrightarrow{NP}=\overrightarrow{MQ}\)
b) \(\overrightarrow{PQ}=\overrightarrow{MN}\)
1) Cho tam giác ABC.Gọi M,N,P lần lượt là trung điểm của BC,CA,AB.Dựng \(\vec{MK} =\vec{CB}\) và \(\vec{KL} = \vec{BN}\)
a) Chứng minh rằng \(\vec{KP} = \vec{PN}\)
b) Tứ giác AKBN là hình gì ? Vì sao ?
c) Chứng minh rằng \(\vec{AL} = \vec{0}\)
Cho tam giác ABC . DỰng điểm B' sao cho \(\overrightarrow{AB'}=\overrightarrow{BC}\) và dựng điểm A' sao cho \(\overrightarrow{CA'}=\overrightarrow{AB}\) . tiếp tục dựng thêm điểm C' sao cho \(\overrightarrow{BC'}=\overrightarrow{CA}\).
a, Chứng minh \(\overrightarrow{AB'}\) là vecto đối của \(\overrightarrow{AC'}\) và A là trung điểm của đoạn thẳng B'C'
b. chứng minh AA',BB',CC' cắt nhau tại 1 điểm