Cho tứ giác ABCD. Gọi M,N,P,Q lần lượt là trung điểm của các cạnh AB,CD,AD,BC. Chứng minh:
a) vectơ MP = vectơ QN
b) vectơ MQ = vectơ PN
Cho tam giác ABC trọng tâm G.Gọi I là trung điểm của AD chứng minh rằng vectơ AB +AC +6GI=vecto 0
Bài 1 : Cho tứ giác ABCD chứng minh nếu vectơ AB = vectơ DC thì vectơ AD = vectơ BC
Bài 2: Cho tứ giác ABCD chứng minh tứ giác đó là hình bình hành khi và chỉ khi vectơ AB = vectơ DC
Cho tam giác ABC có M là trung điểm AB, N là trung điểm AC, P là trung điểm BC
Chỉ ra các vectơ bằng nhau ( giải thích)
cho tam giác ABC đều có cạnh 3a. Lấy các điểm M,N lần lượt trên cạnh BC,CA sao cho BM=a, CN=2a.Gọi P là điểm trên cạnh AB sao cho AM vuông gó với PN . Tính độ dài PN theo a
Bài 2: Cho điểm M và vectơ a . Dựng N sao cho :
a) Vectơ MN = vectơ a
b) Vectơ MN cùng phương với vectơ a và có độ dài bằng vectơ a
Cho tam giác ABC . DỰng điểm B' sao cho \(\overrightarrow{AB'}=\overrightarrow{BC}\) và dựng điểm A' sao cho \(\overrightarrow{CA'}=\overrightarrow{AB}\) . tiếp tục dựng thêm điểm C' sao cho \(\overrightarrow{BC'}=\overrightarrow{CA}\).
a, Chứng minh \(\overrightarrow{AB'}\) là vecto đối của \(\overrightarrow{AC'}\) và A là trung điểm của đoạn thẳng B'C'
b. chứng minh AA',BB',CC' cắt nhau tại 1 điểm
1) Cho tam giác ABC.Gọi M,N,P lần lượt là trung điểm của BC,CA,AB.Dựng \(\vec{MK} =\vec{CB}\) và \(\vec{KL} = \vec{BN}\)
a) Chứng minh rằng \(\vec{KP} = \vec{PN}\)
b) Tứ giác AKBN là hình gì ? Vì sao ?
c) Chứng minh rằng \(\vec{AL} = \vec{0}\)
Cho lục giác ABCDEF có tâm O.
a, Có bao nhiêu vectơ từ các đỉnh của lục giác
b, Kể tên các vectơ cùng phương với vector AB
c, Kể tên các vectơ cùng hướng với vectơ OA