Trong không gian Oxyz, cho tứ diện ABCD với A m ; 0 ; 0 , B 0 ; m - 1 ; 0 , C 0 ; 0 ; m + 4 thỏa mãn B C = A D , C A = B D v à A B = C D . Giá trị nhỏ nhất của bán kính mặt cầu ngoại tiếp tứ diện ABCD bằng
A. 7 2
B. 14 2
C. 7
D. 14
Cho tứ diện ABCD có AB = 4a, CD = 6a, các cạnh còn lại đều bằng a 22 . Tính bán kính của mặt cầu ngoại tiếp tứ diện ABCD.
A. 5 a 2
B. 3a
C. a 85 3
D. a 79 3
Trong không gian Oxyz, cho hai mặt cầu S 1 : x 2 + y 2 + z 2 - 2 x + 4 y - 2 z + 2 = 0 và S 2 : x 2 + y 2 + z 2 - 2 x + 4 y - 2 z - 4 = 0 . Xét tứ diện ABCD có hai đỉnh A,B nằm trên (S1); hai đỉnh C,D nằm trên (S2 ). Thể tích khối tứ diện ABCD có giá trị lớn nhất bằng
A. 3 2
B. 2 3
C. 6 3
D. 6 2
Tứ diện ABCD có A B = A C = 2 , B C = 2 ; D B = D C = 3 . Góc giữa hai mặt phẳng (ABC) và (DBC) bằng 45°. Hình chiếu H của A trên mặt (DBC) và D nằm về hai phía BC. Tính diện tích mặt cầu ngoại tiếp tứ diện ABCD?
A. 5 π 16
B. 5 π 8
C. 5 π
D. 5 π 4
Xét tứ diện ABCD có các cạnh A B = B C = C D = D A = 1 và AC, BD thay đổi. Giá trị lớn nhất của thể tích khối tứ diện ABCD bằng.
A. 2 3 27
B. 4 3 27
C. 2 3 9
D. 4 3 9
Cho tứ diện ABCD có ABC là tam giác cân tại A, người ta để một quả cầu có bán kính r = l vào bên trong tứ diện từ đáy ABC sao cho các cạnh AB, BC, CA lần lượt tiếp xúc với quả cầu và phần quả cầu bên trong tứ diện có thể tích bằng phần quả cầu bên ngoài tứ diện. Biết khoảng cách từ D đến (ABC) bằng 2. Tính thể tích nhỏ nhất của tứ diện ABCD?
A . I ( 1 ; 1 ; - 1 ) , I ( - 3 ; 5 ; 7 ) .
B . I ( 3 ; - 7 ; l ) , I ( 2 ; 0 ; - l ) .
C . I ( 3 ; - 7 ; 1 ) , I ( - 3 ; 5 ; 7 ) .
D . I ( 0 ; - l ; 4 ) , I ( l ; - 3 ; 3 ) .
Cho tứ diện ABCD có A B = A C = 2 , B C = 2 , D B = D C = 3 , góc giữa hai mặt phẳng A B C và D B C bằng 45 ° . Gọi H là hình chiếu vuông góc của A trên mặt phẳng D B C sao cho H và D nằm về hai phía của BC. Tính diện tích S của mặt cầu ngoại tiếp tứ giác ABCD.
A. S = 5 π
B. S = 5 π 4
C. S = 5 π 8
D. S = 5 π 16
Cho tứ diện ABCD có AB=2; CD=4 và các cạnh còn lại cùng bằng 6. Tính diện tích mặt cầu ngoại tiếp tứ diện S.ABCD.
A. 1156 π 31
B. 1156 π 93
C. 47 π
D. 1280 π 93
Cho tứ diện ABCD có hai mặt phẳng (ABC) và (BCD) vuông góc với nhai. Biết tam giác ABC đêì cạnh a, tam giá BCD vuông cân tại D. Bán kính mặt cầu ngoại tiếp tứ diện ABCD bằng
A . a 2 3
B . a 3 3
C . 2 a 3 3
D . a 3 2