a: NP=căn 3^2+4^2=5cm
b: Xét ΔNMK vuông tại M và ΔNHK vuông tại H có
NK chung
góc MNK=góc HNK
=>ΔNMK=ΔNHK
c: Xét ΔKMI vuông tại M và ΔKHP vuông tại H có
KM=KH
góc MKI=góc HKP
=>ΔKMI=ΔKHP
=>KI=KP
=>KP>MI
a: NP=căn 3^2+4^2=5cm
b: Xét ΔNMK vuông tại M và ΔNHK vuông tại H có
NK chung
góc MNK=góc HNK
=>ΔNMK=ΔNHK
c: Xét ΔKMI vuông tại M và ΔKHP vuông tại H có
KM=KH
góc MKI=góc HKP
=>ΔKMI=ΔKHP
=>KI=KP
=>KP>MI
Cho tam giác MNP vuông tại M, Kẻ MI vuông góc với NP tại I. Vẽ MK là tia phân giác của
IMP (K∈IP). Đường thẳng đi qua K và vuông góc với MP, cắt MP tại A.
1) Chứng minh KM là tia phân giác IKA.
2) Chứng minh IK < KP.
3) Gọi giao điểm của AK và MI là B. Chứng minh MK⊥BP và IA//BP.
Mình cần gấp ạ, mong mọi người giải giúp ạ.
Cho tam giác MNP vuông tại M có MN = 6 cm NP = 10 cm, tia phân giác của góc N cắt MP tại D kẻ DE vuông góc với NP tại E
a,Tính MP
b,Chứng minh MD = ED
c,Gọi I là giao điểm của MN và DE Chứng minh ME song song với IP
cho tam giác MNP vuông tại M có MN = 4cm , MP =3cm
a, Tính NP và so sánh các góc trong tam giác MNP
b , Trên Tia đối của PM lấy A sao cho P là trung điểm của AM . Qua P dựng đường thẳng vuông góc với AM cắt AN tại C . Chứng minh tam giác CPM = tam giác CPA
c ,Chứng minh CM = CN
d , Gọi G là giao điểm của MC và NP. Tính NG
e ,Từ A kẻ đường thẳng vuông góc với đường thẳng NP tại D . Vẽ tia Nx là tia phân giác của góc MNP . Vẽ tia Ay là phân giác góc PaD . Tia Ay cắt các tia NP , Nx ,NM lần lượt tại E ,H ,K . Chứng minh tam giác NEK cân
Cho tam giác MNP vuông tại M (MN < MP). Vẽ tia phân giác NI (I thuộc MP), từ I kẻ IK vuông góc với NP tại K. Gọi Q là giao điểm của tia KI và tia NM. Chứng minh rằng: 1) ANMK là tam giác cân 2) ANQP là tam giác cân 3) MK // QP
Cho tam giác MNP vuông tại M ( MN<MP).Vẽ tia phân giác NI (I thuộc MP),từ I kẻ IK vuông góc với NP tại K.Gọi Q là giao điểm của tia KI và tia NM.Chứng minh rằng:
1)Tam giác MNK là tam giác cân
2)Tam giác NQP là tam giác cân
3)MK//QP
LÀM ƠN GIÚP MÌNH VỚI MÌNH CẦN GẤP LẮM Ạ!
CHO TAM GIÁC MNP VUÔNG TẠI N(NM<NP), TIA PHÂN GIÁC CỦA GÓC M CẮT CẠNH NP TẠI K.TRÊN MP LẤY ĐIỂM I SAO CHO MN=MI
A) CHỨNG MINH TAM GIÁC MNK = TAM GIÁC MIK. SUY RA TAM GIÁC NKI CÂN
B) TIA MN CẮT TIA IK TẠI E. CHỨNG MNH MK VUÔNG GÓC EP
Cho tam giác MNP vuông tại M,tia phân giác của góc N cắt MP tại D. Kẻ DE vuông góc với NP gọi F là giao điểm của NM và DE
a.Chứng minh MN=NE
b.Chứng minh ND vuông góc với FP
a.Gọi H là giao điểm của NP và FP. Trên tia đối của tia DF lấy điểm K sao cho DK=DF lấy điểm I trên DP sao cho PE=2 lần DI
Chứng minh KHI thẳng hàng.
cho tam giác MNP, có MN < MP. Trên tia NM lấy điểm D sao cho ND=NP. Gọi NE là phân giác của góc MNP (E thuộc MP).. Gọi H là giao điểm của NE và PD. Từ M kẻ MI vuông góc PN tại I. Chứng minh rằng:
a)ED=EP
b) BH vuông góc với PD
c) GÓC DNP = 2.^DMI