Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Chi thối

Cho tam giác MNP  vuông tại M, có D, E, F lần lượt là trung điểm của MN, NP, MP.

a) Tứ giác MDEF là hình gì? Vì sao?

b) Gọi I là trung điểm của DE . Chứng minh 3 điểm N, I, F thẳng hàng

c) Chứng minh: IF.NE = NF.ME - IF.PE

Akai Haruma
28 tháng 12 2023 lúc 11:00

Lời giải:

a. $D,E,F$ là trung điểm $MN,NP,MP$ nên $EF, DE$ lần lượt là đường trung bình của tam giác $ABC$ ứng với lần lượt 2 cạnh $MN, MP$

$\Rightarrow EF\parallel MN, DE\parallel MP$

Mà $MN\perp MP$ nên $EF\perp MP, DE\perp MN$

$\Rightarrow \widehat{EFM}=\widehat{EDM}=90^0$

Tứ giác $MDEF$ có 3 góc vuông $\widehat{M}=\widehat{D}=\widehat{F}$ nên là hình chữ nhật.

b.

Gọi $I'$ là giao điểm $NF$ và $DE$

Do $DE\parallel MP$ nên $DI'\parallel MF$

Áp dụng định lý Talet:

$\frac{DI'}{MF}=\frac{ND}{NM}=\frac{1}{2}$

$\Rightarrow MF=2DI'$

Mà $MF=DE$ (do $MFED$ là hcn) 

$\Rightarrow DE=2DI'$

$\Rightarrow I'$ là trung điểm của $DE$
$\Rightarrow I\equiv I'$

Mà $I', N, F$ thẳng hàng nên $I, N, F$ thẳng hàng.

c.

Có: $\frac{NI}{NF}=\frac{ND}{NM}=\frac{1}{2}$ nên $I$ là trung điểm $NF$

$DF$ là đường trung bình của tam giác $ABC$ ứng với cạnh $BC$

$\Rightarrow DF=\frac{1}{2}NP\Rightarrow ME=DF=\frac{1}{2}NP$.

Khi đó ta có:

$NF.ME-IF.PE = 2IF.\frac{1}{2}NP-IF.PE$

$=IF.NP-IF.PE = IF(NP-PE) = IF.NE$

Akai Haruma
28 tháng 12 2023 lúc 11:03

Hình vẽ:


Các câu hỏi tương tự
Chi thối
Xem chi tiết
Chithanh 4872
Xem chi tiết
Nguyễn Thuỳ Linh
Xem chi tiết
Cíu iem
Xem chi tiết
Cíu iem
Xem chi tiết
Cíu iem
Xem chi tiết
Cíu iem
Xem chi tiết
Kim Min Chu
Xem chi tiết
Tường Khang
Xem chi tiết