Cho tam giác MNP cân tại M, MI là đường phân giác (I thuộc NP) a) chứng minh tam giác MIN=tam giác MIP b) kẻ EI vuông góc MN tại E , IF vuông góc MP tại F .chứng minh tam giác MEF cân
Cho tam giác MNP cân tại M . MI là đường trung tuyến của tam giác MNP. kẻ NK vuông góc MP và cắt MI tại O.
chứng minh MI vuông góc np.
C/m PO vuông góc MN tại J.
C/m PK=NJ.
C/m Jk song song NP.
Kẻ phân giác góc MNO cắt MO tại H tính số đo góc MKH
Cho tam giác MAB cân tại M. Kẻ MI là tia phân giác của góc M (I ϵ AB)
Tưd I kẻ IH vuông góc MA ( H ϵ AM); IK vuông góc MB (K ϵ MB). Chứng minh rằng:
a) tam giác MIH = tam giác MIK
b) IH = IK
c) tam giác MHK cân tại M
Bài 2: Cho tam giác MNP vuông tại M. Tia phân giác của góc N cắt MP tại I. Kẻ IH vuông góc NP tại H. Chứng minh: a) tam giác MNI= tam giácHNI b) tam giác IMH là tam giác cân
Cho tam giác MNP cân tại P . Kẻ ND vuông góc MP , kẻ PE vuông góc MN . Gọi K là giao điểm của ND , PE . CMR ; MK là tia phân giác của góc M
Cho tam giác MNP vuông tại M, có MN=3cm, MP=4cm. Tia phân giác của góc MNP cắt MP tại K. Kẻ KH vuông góc với NP
a) tính NP
b) chứng minh tam giác MNK=HNK
c) gọi I là giao điểm của hai tia NM và HK. chứng minh MI<KP
CÁC BẠN GIÚP MÌNH NHÉ. MÌNH ĐANG CẦN GẤP. PLEASE!!!!!!
Cho tam giác MNP vuông tại M, Kẻ MI vuông góc với NP tại I. Vẽ MK là tia phân giác của
IMP (K∈IP). Đường thẳng đi qua K và vuông góc với MP, cắt MP tại A.
1) Chứng minh KM là tia phân giác IKA.
2) Chứng minh IK < KP.
3) Gọi giao điểm của AK và MI là B. Chứng minh MK⊥BP và IA//BP.
Cho tam giác MNP vuông tại M (MN < MP). Vẽ tia phân giác NI (I thuộc MP), từ I kẻ IK vuông góc với NP tại K. Gọi Q là giao điểm của tia KI và tia NM. Chứng minh rằng: 1) ANMK là tam giác cân 2) ANQP là tam giác cân 3) MK // QP
Cho tam giác MNP vuông tại M ( MN<MP).Vẽ tia phân giác NI (I thuộc MP),từ I kẻ IK vuông góc với NP tại K.Gọi Q là giao điểm của tia KI và tia NM.Chứng minh rằng:
1)Tam giác MNK là tam giác cân
2)Tam giác NQP là tam giác cân
3)MK//QP