Cho tam giác ABC đều cạnh a. Gọi (P) là mặt phẳng chứa BC và vuông góc với mặt phẳng (ABC). Trong (P) xét đường tròn (C) đường kính BC. Diện tích mặt cầu nội tiếp hình nón có đáy là (C) và đỉnh A bằng
A. πa 2 2
B. πa 2 3
C. πa 2
D. 2 πa 2
Căt hình nón đỉnh S bởi mặt phẳng đi qua trục ta được một tam giác vuông cân có cạnh huyền bằng a√2.
a) Tính diện tích xuang quanh, diện tích đáy và thể tích của khối nón twong ứng.
b) Cho một dây cung BC và đường tròn đáy hình nón sao cho mặt phẳng (SBC) tạo với mặt phẳng chứa đáy hình nón một góc 60. Tính diện tích hình vuông và mặt phẳng đáy.
Cho hình chóp tam giác đều S.ABC có các cạnh bên bằng a và góc giữa các mặt bên và mặt phẳng đáy bằng 60 0 . Tính thể tích của khối nón có đỉnh S và đường tròn đáy là đường tròn nội tiếp tam giác ABC.
A. V = πa 3 7 49
B. V = πa 3 3 147
C. V = πa 3 21 21
D. V = πa 3 21 147
Cắt hình nón đỉnh I bởi một mặt phẳng đi qua trục hình nón ta được một tam giác vuông cân có cạnh huyền bằng a 2 ; BC là dây cung của đường tròn đáy hình nón sao cho mặt phẳng (IBC) tạo với mặt phẳng chứa đáy hình nón một góc 60 ° . Tính theo a diện tích S của tam giác IBC.
A. S = a 2 2 3
B. S = 2 a 2 3
C. S = a 2 3
D. S = a 2 2 6
Cho một lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng a. Góc giữa A’C và mặt phẳng đáy bằng 60 ° . Diện tích xung quanh S x q của hình nón có đáy là đường tròn nội tiếp tam giác ABC và đỉnh là trọng tâm của tam giác A’B’C’ là
A. S x q = πa 2 333 36
B. S x q = πa 2 111 36
C. S x q = πa 2 333 6
D. S x q = πa 2 111 6
Cho hình nón đỉnh S. Xét hình chóp S.ABC có đáy ABC là tam giác ngoại tiếp đường tròn đáy của hình nón và A B = B C = 10 a , A C = 12 a , góc tạo bởi hai mặt phẳng (SAB)) và (ABC) bằng 45 ° Thể tích khối nón đã cho bằng
A. 9 πa 3 .
B. 12 πa 3 .
C. 27 πa 3 .
D. 3 πa 3 .
Cho hình nón đỉnh S. Xét hình chóp S.ABC có đáy ABC là tam giác ngoại tiếp đường tròn đáy của hình nón và AB = BC = 10a ,AC=12a, góc tạo bởi hai mặt phẳng (SAB)) và (ABC) bằng 45 0 . Thể tích khối nón đã cho bằng
A. 9 πa 3
B. 12 πa 3
C. 27 πa 3
D. 3 πa 3
Cho hình nón đỉnh S. Xét hình chóp S.ABC có đáy ABC là tam giác ngoại tiếp đường tròn đáy của hình nón và có AB = BC = 10a, AC = 12a góc tạo bởi hai mặt phẳng (SAB) và (ABC) bằng 45 ° . Tính thể tích khối nón đã cho.
A . 9 π a 3
B . 27 π a 3
C . 3 π a 3
D . 12 π a 3
Cho lăng trụ tam giác ABC.A'B'C' có đáy là tam giác đều cạnh bằng a, góc tạo bởi cạnh bên và mặt phẳng đáy bằng 30 o . Biết hình chiếu vuông góc của A’ trên (ABC)trùng với trung điểm cạnh BC. Tính theo a bán kính mặt cầu ngoại tiếp tứ diện A'.ABC
A. R = a 3 9
B. R = 2 a 3 3
C. R = a 3 3
D. R = a 3 6