Cho tam giác cân ABC (AB = AC), đường cao AK. Gọi H là trực tâm tam giác ABC, đường tròn đường kính AH cắt cạnh AB, AC tại D và E. Chứng minh rằng KD và KE là tiếp tuyến của đường tròn đường kính AH.
Cho tam giác ABC nhọn. Đường tròn tâm O đường kính BC cắt AB ở M và cắt AC ở N. Gọi H là giao điểm của BN và CM, E là trung điểm AH.
a) Chứng minh H là trực tâm của tam giác ABC.
b) Chứng minh ME là tiếp tuyến của đường tròn (O).
c) Chứng minh MN. OE = 2ME. MO
Cho tam giác ABC nhọn (AB < AC) vẽ đường tròn tâm O có đường kính BC cắt hai cạnh AB và AC theo thứ tự tại E và F ,gọi H là giao điểm của BE và CF, AH cắt BC tại D. Gọi I là trung điểm AH
a. Chứng minh tứ giác AEHF nội tiếp đường tròn tâm I và AD vuông góc BC
b. Chứng minh tứ giác OEIF nội tiếp và 5 điểm O, D, E, I, F cùng thuộc một đường tròn
C. cho biết BC = 6 cm và góc A = 60 độ Tính độ dài OI
Tam giác ABC vuông tại A , đường cao AH . Đường tròn tâm I đường kính BH cắt AB tại E . Đường tròn tâm J đường kính HC cắt AC tại F . Chứng minh
a AH là tiếp tuyến chung của hai đường tròn tâm J và I tại H
b EF là tiếp tuyến của đường tròn tâm I tại E , tiếp tuyến của đường tròn tâm J tại F
Cho tam giác ABC vuông tại A, có đường cao AH ( AB < AC ). Vẽ đường tròn (B;
BA) cắt đường thẳng AH tại D) (D khác A).
a) Chứng minh H là trung điểm của AD và tam giác CAD cân.
b) Chứng minh CD là tiếp tuyến của đường tròn (B; BA).
c) Vẽ đường kính AK của đường tròn (B;BA). Từ K vẽ đường thẳng vuông góc với AK cắt
đường thẳng AD tại N. Chứng minh DN.DC = DB.DK
d) Từ điểm M thuộc cung nhỏ AD của đường tròn (B;BA) vẽ tiếp tuyến cắt AC và CD lần
lượt tại E và F. Chứng minh rằng: Nếu diện tích tứ giác ABDC gấp 4 lần diện tích tam giác EBF
thì CE +CF = 3EF .
Cho tam giác ABC vuông tại A có đường cao AH. Vẽ đường tròn tâm A bán kính AH và kẻ thêm đường kính HD của đường tròn đó. Từ D kẻ tiếp tuyến với đường tròn, cắt AC kéo dài tại E.
a.Chứng minh rằng tam giác BEC là tam giác cân tại B.
b.Chứng minh rằng BE là tiếp tuyến của đường tròn tâm A bán kính AH.
Cho tam giác ABC nhọn có AB < AC, đường cao AD. Đường tròn tâm ),đường kính BC. Vẽ AM và AN là hai tiếp tuyến của đường tròn.
a. Chứng minh 5 điểm M, N, O, D. A cùng thuộc một đường tròn
b. Gọi MN cắt AD tại H. Chứng minh H là trực tâm tam giác ABC
Cho tam giác ABc vuông tại A đường cao AH vẽ đường tròn tâm I đường kính BH cắt AB tại M và đường tròn tâm K đường kính CH cắt AC tại N
a Chứng minh rằng tứ giác AMHN là hình chữ nhật
b Chứng minh rằng MN là tiếp tuyến chung của hai đường tròn
c Tìm điều kiện của tam giác ABC để M N có độ dài lớn nhất
Tam giác ABC vuông tại A , đường cao AH . Đường tròn tâm I đường kính BH cắt AB tại E . Đường tròn tâm J đường kính HC cắt AC tại F . Chứng minh
a AH là tiếp tuyến chung của hai đường tròn tâm J và I tại H
b EF là tiếp tuyến của đường tròn tâm I tại E , tiếp tuyến của đường tròn tâm J tại F