a: Xét ΔABE vuông tại A và ΔKBE vuông tại K có
BE chung
ˆABE=ˆKBEABE^=KBE^
Do đó: ΔABE=ΔKBE
b: Xét ΔAEM vuông tại A và ΔKEC vuông tại K cso
EA=EK
ˆAEM=ˆKECAEM^=KEC^
Do đó:ΔAEM=ΔKEC
Suy ra: EM=EC
c: Xét ΔBMC có BA/AM=BK/KC
nên AK//MC
a: Xét ΔABE vuông tại A và ΔKBE vuông tại K có
BE chung
ˆABE=ˆKBEABE^=KBE^
Do đó: ΔABE=ΔKBE
b: Xét ΔAEM vuông tại A và ΔKEC vuông tại K cso
EA=EK
ˆAEM=ˆKECAEM^=KEC^
Do đó:ΔAEM=ΔKEC
Suy ra: EM=EC
c: Xét ΔBMC có BA/AM=BK/KC
nên AK//MC
cho tam giác ABC vuông tại A, phân giác BE. Kẻ EK vuông góc với BC tai K. Gọi M là giao điểm của BA và KE a)CM △ ABE=△KBE b)EM=EC c)AK // MC d)Gọi N là trung điểm của MC. Chứng minh 3 điểm B,E,N thẳng hàng.
Cho tam giác ABC vuông tại A, phân giác BE. Kẻ EK vuông góc với BC tại K. Gọi M là giao điểm của BA và KE. Chứng minh :
a) ΔABE = ΔKBE
b) EM = EC
c) AK // MC
d) Gọi N là trung điểm của MC. CM 3 điểm B,E,N thẳng hàng
Giúp mình với mình cần gấp ạ
Cho tam giác ABC vuông tại A, phân giác BE. Kẻ EK vuông góc với BC tại K. Gọi M là giao điểm của BA và KE. Chứng minh :
a) ΔABE = ΔKBE
b) EM = EC
c) AK // MC
d) Gọi N là trung điểm của MC. Chứng minh 3 điểm B, E, N thẳng hàng
Các bạn giúp mình với
Cho tam giác ABC vuông tại A. Tia phân giác góc B cắt cạnh AC tại điểm M. Kẻ M D ⊥ B C ( D ∈ B C ) .
a) Chứng minh BA = BD.
b) Gọi E là giao điểm của hai đường thẳng DM và BA. Chứng minh ∆ A B C = ∆ D B E .
c) Kẻ D H ⊥ M C ( H ∈ M C ) và A K ⊥ M E ( K ∈ M E ) . Gọi N là giao điểm của hai tia DH và AK. Chứng minh MN là tia phân giác góc HMK.
d) Chứng minh ba điểm B, M, N thẳng hàng.
Tam giác ABC vuông ở A, BE là phân giác góc ABC. Kẻ EH vuông góc với BC. Gọi K là giao điểm BA và HE. Chứng minh rằng:
a) Tam giác ABE = tam giác HBE
b) BE là trung trực của AH
c) EK = EC
d) AE < EC
e) Gọi I là trung điểm của Kc, Cm B,E,I thẳng hàng
Cho tam giác ABC vuông tại A. Tia phân giác góc B cắt cạnh AC tại điểm M. Kẻ MD⊥BC (D thuộc BC)
a) Chứng minh BA = BD.
b) Gọi E là giao điểm của hai đường thẳng DM và BA. Chứng minh △ABC = △DBE
c) Kẻ DH ⊥ MC ( H∈MC) và AK ⊥ ME ( K∈ME). Gọi N là giao điểm của DH và AK. Chứng minh MN là tia phân giác của góc HMK.
d) Chứng minh ba điểm B, M, N thẳng hàng.
1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.
a. Chứng minh: ∆BAD = ∆BED
b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE
c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC
2.
Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D.
a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC
b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.
c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.
3.
Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.
a.Chứng minh: ∆ABE = ∆MBE.
b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,
c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC
4
Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.
a) Chứng minh ∆ABM = ∆ACM
b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.
c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng
d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.
Cho tam giác ABC vuông tại A. Tia phân giác góc B cắt cạnh AC tại điểm M. Kẻ MD vuông góc với BC( D thuộc BC)
a) Chứng minh BA = BD
b) Gọi E là giao điểm của hai đường thẳng d m và B Chứng minh tam giác ABC bằng tam giác DBE.
c) kẻ BH vuông góc MC(H thuộc MC) và AK vuông góc vs ME. Chứng minh MN là tia phân giác góc HMK.
d) Chứng minh ba điểm B, M, N thẳng hàng
cho tam giác ABC có A =90 độ ; đường phân giác BE(E thuộc AC).kẻ EH vuông góc với BC (H thuộc BC ).gọi K là giao điểm của AB và HE .chứng minh:
a)tam giác ABE=tam giác HBE
b)EK=EC
c)BE vuông góc với AH
d)AE<EC