Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
ACE_max

cho tam giác ABC có A =90 độ ; đường phân giác BE(E thuộc AC).kẻ EH vuông góc với BC (H thuộc BC ).gọi K là giao  điểm của AB và HE .chứng minh:

a)tam giác ABE=tam giác HBE

b)EK=EC

c)BE vuông góc với AH

d)AE<EC

NGUYỄN♥️LINH.._.
12 tháng 3 2022 lúc 9:51

tham khảo

a) Xét tam giác vuông ABE và tam giác vuông HBE (^BAE = ^BHE = 90o)

BE chung

^ABE = ^HBE (BE là phân giác ^ABC)

=> tam giác vuông ABE = tam giác vuông HBE (ch - gn)

b) Ta có: AE = HE (tam giác vuông ABE = tam giác vuông HBE)

=> E thuộc đường trung trực của AH (1)

Ta có: AB = HB (tam giác vuông ABE = tam giác vuông HBE)

=> B thuộc đường trung trực của AH (2)

Từ (1) và (2) => BE là đường trung trực của AH (đpcm)

c) Ta có: ^BEK = ^BEA + ^AEK

               ^BEC = ^BEH + ^HEC

Mà ^BEA = ^BEH (tam giác vuông ABE = tam giác vuông HBE)

      ^AEK = ^HEC (2 góc đối đỉnh)

=> ^BEK = ^BEC

Xét tam giác BEK và tam giác BEC: 

^BEK = ^BEC (cmt)

^KBE = ^CBE (BE là phân giác ^ABC)

BE chung

=> tam giác BEK = tam giác BEC (g - c - g)

=> EK = EC (cặp cạnh tương ứng)

 

Thêu Mai
13 tháng 2 2023 lúc 21:39

Xét ΔABE và ΔHBE, ta có:

\widehat{BAE} =\widehat{BHE} =90^0 (gt)

\widehat{B_1} =\widehat{B_2}( BE là đường phân giác BE).

BE là cạnh chung.

=> ΔABE = ΔHBE

2. BE là đường trung trực của AH :

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .

3. EK = EC

Xét ΔKAE và ΔCHE, ta có :

\widehat{KAE} =\widehat{CHE} =90^0 (gt)

EA = EH (cmt)

\widehat{E_1} =\widehat{E_2}( đối đỉnh).

=> ΔKAE và ΔCHE

=> EK = EC

4. EC > AC

Xét ΔKAE vuông tại A, ta có :

KE > AE (KE là cạnh huyền)

Mà : EK = EC (cmt)

=> EC > AC.

cre baji

yeu


Các câu hỏi tương tự
Trương Công Phước
Xem chi tiết
Dang Khanh Ngoc
Xem chi tiết
Dang Khanh Ngoc
Xem chi tiết
Mây Phiêu Du
Xem chi tiết
Lộc Trần Duy
Xem chi tiết
Đoàn Nguyễn Minh Quân
Xem chi tiết
Toan Nguyễn
Xem chi tiết
Kudo Shinichi
Xem chi tiết
Kudo Shinichi
Xem chi tiết