Cho tam giác ABC vuông tại A (AB<AC), trung tuyến AM ,đường cao Ah .gọi E<F lần lượt là hình chiếu của điểm H trên cạnh AB,AC
1, Tứ giác AEHF là hình gì ? Vì sao?
2, Biết AB = 3cm ,AM= 2,5 cm . Tính diện tích tam giác ABC
3, C/m AM vuông góc với EF
4, Trên tia đối của tia MA lấy điểm D sao cho MD=MA , gọi I là điểm đối xứng của A qua BC. C/m tứ giác BIDC là hình thang cân
toán 8 nhak các bạn
Cho hình chóp S.ABC có mỗi mặt bên là một tam giác vuông và S A = S B = S C = a . Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC; D là điểm đối xứng của S qua P. I là giao điểm của đường thẳng AD với mặt phẳng (SMN). Tính theo a thể tích của khối tứ diện MBSI.
A. a 3 12 .
B. a 3 36 .
C. a 3 6 .
D. 2 a 3 12 .
cho tam giác ABC có 3 góc nhọn, (AB<AC) . vẽ về phía ngoài tam giác ABC các tam giác đều ABD;ACE .gọi I là giao điểm của CD và BE ; K là giao điểm của AB và DC.
a) CMR: tam giác ADC= tam giác ABE
b) chứng minh : góc DIB= 60 độ
c) gọi M và N lần lượt là trung điểm CD và DE .CMR : tam giác AMN đều
d) CMR : IA là tia phân giác của góc DIE
cho tam giác ABC có 3 góc nhọn, (AB<AC) . vẽ về phía ngoài tam giác ABC các tam giác đều ABD;ACE .gọi I là giao điểm của CD và BE ; K là giao điểm của AB và DC.
a) CMR: tam giác ADC= tam giác ABE
b) chứng minh : góc DIB= 60 độ
c) gọi M và N lần lượt là trung điểm CD và DE .CMR : tam giác AMN đều
d) CMR : IA là tia phân giác của góc DIE
Cho tam giác ABC(góc A=90o) có M là trung điểm của BC. Điểm D và E là các điểm đối xứng với M qua AB và AC; MD cắt AB ở F;ME cắt AC ở N.
a) Tứ giác AFMN là hình gì? Vì sao?
b) Chứng minh tứ giác ADBM là hình thoi
c) Chứng minh A là trung điểm của DE
Mọi người làm hộ mình bài toán này nhé,cảm ơn nhiều
Cho tam giác ABC vuông tại A,đường trung tuyến CM
A)Cho biết BC=10cm,AC=6cm.Tính độ dài đoạn thẳng AB,BM
B)Trên tia đối của tia MC lấy điểm D sao cho MD = MC.Chứng minh rằng tam giác MAC = tam giác MBD và AC = BD
C)Chứng minh rằng AC + BC > 2CM
D)Gọi K là điểm trên đoạn thẳng AM sao cho.Gọi N là giao đieme của CK và AD,I là giao điểm của BN và CD
Chứng minh rằng CD = 3ID
cho tam giác ABC, đừng trung tuyến AM. gọi I là trung điểm của BM. Trên tia đối của tia IA lấy E sao cho IE = IA.
a/ cm M là trọng tâm của tam giác AEC
b/ gọi E là trung điểm của CE. cm A, M, E thẳng hàng.
cho tam giác ABC có 3 góc nhọn, (AB<AC) . vẽ về phía ngoài tam giác ABC các tam giác đều ABD;ACE .gọi I là giao điểm của CD và BE ; K là giao điểm của AB và DC.
a) CMR: tam giác ADC= tam giác ABE
b) chứng minh : góc DIB= 60 độ
c) gọi M và N lần lượt là trung điểm CD và DE .CMR : tam giác AMN đều
d) CMR : IA là tia phân giác của góc DIE
Cho hình chóp S.BCD có SA vuông góc với mặt phẳng (ABCD); tứ giác ABCD là hình thang vuông với cạnh đáy AD, BC; A D = 3 B C = 3 a ; A B = a , S A = a 3 . Điểm I thỏa mãn A D ⇀ = 3 A I ⇀ ;M là trung điểm SD, H là giao điểm của AM và SI . Gọi E , F lần lượt là hình chiếu của A lên SB , . SC Tính thể tích V của khối nón có đáy là đường tròn ngoại tiếp tam giác EFH và đỉnh thuộc mặt phẳng (ABCD).
A. V = πa 3 2 5
B. V = πa 3 5
C. V = πa 3 10 5
D. V = πa 3 5 5