cho tam giác abc vuống góc A, AH vuông BC(H thuộc BC)
a, chứng minh tam giác abc đồng dạng ới tam giác hba => Ab bình = BH . BC
b, CM tam giác abc đồng dạng với tam giác hac => Ac bình = CH . BC
c,CM AB . AC=AH .BC
d, CM AH bình =HB . HC
Cho tam giác ABC, góc A = 900, AH vuông góc BC, AB = 6cm, AC = 8 cm, phân giác của góc B cắt AH tại I, cắt BC tại D
1. Tính BC, AD, DC
2. CM tam giác ABC đồng dạng với tam giác HBA, tam giác ABI đồng dạng với tam giác CBD
3. CM AB2 = BH . BC, AH2 = HB . HC, \(\dfrac{IH}{IA}\) = \(\dfrac{AD}{BC}\)
Cho tam giác ABC vuông tại A có đường cao AH. a/ cm AH2= HB.HC. b/biết HB=3,6cm, HC=6,4cm. Tính BC, AH, AB, AC
Cho tam giác ABC vuông tại A; đường cao AH ( H thuộc BC ) và phân giác CM ( M thuộc AB ). N là giao điểm AH và CM. Biết BH = 3cm; HC = 27cm. Chứng minh AH2 = BH x HC
Cho tam giác ABC vuông tại A có đường cao AH a/ cm AC2=HC.BC b/ biết HB=25cm, HC=36cm, tính BC, AH, AB
cho tam giác ABC vuông tại A , có AB = 6 cm ; AC = 8 cm . vẽ đường cao AH và phân giác AD của góc A (D∈AB)
a, tính BC
b, CMR : AB2 = BH.BC
c, tính BH,BD
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E và F lần lượt là hình chiếu của H trên AB, AC. a) Chứng minh: AB^2 = BH . BC b) Chứng minh: AH^2 = HB . HC c) Chứng minh tam giác AFE đồng dạng với tam giác ABC. d) Cho BC = 30 cm, AC = 12 cm, tính diện tích tam giác AEF
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E và F lần lượt là hình chiếu của H trên AB, AC. a) Chứng minh: AB^2 = BH . BC b) Chứng minh: AH^2 = HB . HC c) Chứng minh tam giác AFE đồng dạng với tam giác ABC. d) Cho BC = 30 cm, AC = 12 cm, tính diện tích tam giác AEF
Cho tam giác ABC vuông tại A , AB = 12 cm , AC = 16 cm , Đường cao AH
a/ Chứng minh ΔABC ~ ΔHBA . Suy ra hệ thức AB2 = BH . BC
b/Tính số đo độ dài đoạn thẳng BC ; BH ; AH
c/ Gọi BD là phân giác của góc ABC , tính tỉ số diện tích của ΔABD và ΔCBD
Giúp mik với , Mai mình thi rồi , Thanks For All.