a: Xét ΔABC vuông tại A có AH là đường cao
nên AC^2=CH*CB
b: \(BC=25+36=61\left(cm\right)\)
\(AB=\sqrt{25\cdot61}=5\sqrt{61}\left(cm\right)\)
=>A\(C=6\sqrt{61}\left(cm\right)\)
a: Xét ΔABC vuông tại A có AH là đường cao
nên AC^2=CH*CB
b: \(BC=25+36=61\left(cm\right)\)
\(AB=\sqrt{25\cdot61}=5\sqrt{61}\left(cm\right)\)
=>A\(C=6\sqrt{61}\left(cm\right)\)
Cho tam giác ABC vuông tại A có đường cao AH. a/ cm AH2= HB.HC. b/biết HB=3,6cm, HC=6,4cm. Tính BC, AH, AB, AC
1. Cho tam giác ABC vuông tại A(AB<AC) có đường cao AH. Biết BC = 25cm, AH = 12cm. Tính AB, AC, BH, CH
2. Cho tam giác ABC vuồng tại A, đường cao AH. Biết AB = 15cm, HC = 16cm. Tính AC, BC, AH, BH
Cho tam giác ABC vuông tại A, kẻ AH vuông góc BC. Biết BH = 25cm và HC = 36cm. Tính AH.
A. 30cm
B. 25cm
C. 20cm
D. 32cm
1.cho tam giác ABC vông tại A, đường cao AH. Biết AB=3cm, BC=5cm. Tính AC, AH, BH, CH 2. Cho tam giác ABC vông tại A, đường cao AH. Biết HB=3,6cm, HC=6,4cm. Tính BC,AB,AC,AH
Cho tam giác ABC vuông tại A có BC bằng 6 cm AC bằng 8 cm Kẻ đường cao AH a,Chứng minh tam giác ABC đồng dạng với tam giác hba chứng minh ah² = HB nhân HC tính độ dài của BC ah phân giác của góc ACB cắt ah tại E cắt d cắt AB tại D tính tỉ số diện tích của tam giác acd và tam giác hce
cho tam giác ABC vuông tại A ,AB=9 cm ;AC=12 cm ;BC=15cm ; AH=7,2cm ; HC=5,4cm ; HB =9,6 cm . Đường cao AH .Cho tia phân giác của góc BAC cắt BC tại A .Tính BD và CD
Cho tam giác ABC vuông tại H có AH là đường cao (H thuộc BC) a) CMR tam giác ABC đồng dạng tam giác HAC b) Tính HC.BC=BC^2-AB^2
Cho tam giác ABC vuông tại A có AB = 12cm, BC= 20cm. Kẻ đường cao AH. a) Chứng minh ∆ABC và ∆ HBA đồng dạng. b) Chúng minh AH^2= HB. HC c) Tính độ dài AH
cho tam giác abc đường cao ah ab=9cm,ac=12cm
a, chứng minh tam giac abc đồng dạng tam giác hac
b,chứng minh AC2=BC.HC
c,tính bc,hc,hb,ah